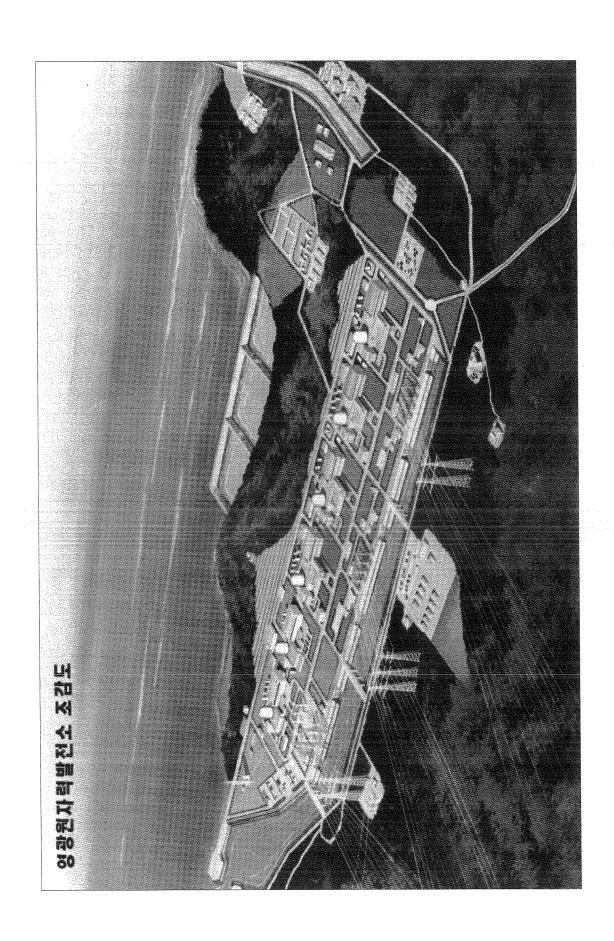
영광원자력 5,6호기


방사선환경영향평가서

개정 1. 2001.9.

목 차

1.	발전소 건설계획의 개요	1-1
1.1	발전소 건설의 필요성	1-3
1.2	운영허가 신청시 방사선환경영향평가 실시근거	1-4
1.3	사업의 추진 경위	1-4
1.4	발전소 건설계획	1-4
1.5	당해부지 선정이유	1-17
	환경의 현황	2-1
2.1	부지의 현황	2-3
2.2	토지이용	2-19
2.3	해양이용	2-47
2.4	기상 및 대기확산	2-63
2.5	기상 및 대기확산수문 및 수문확산	2-95
	· 해황 및 해양확산	
2.7	'인 구	2-151
2.8	3 환경방사선/능 현황	2-177
demonstrated of the control of the c	발전소의 현황	3-1
3.1	. 외 관	3-3
3.2	? 원자로와 증기·전기계통	3-11
3.3	3 연료저장시설	3-23
3.4	1 방사성폐기물처리계통	3-43
3.5	5 방사선원	3-85
IV	거섴ㄹ 이하 영향	4-1

4.1	선량 계산모델4-	-3
4.2	선량 계산 시 가정4	-6
4.3	선량계산4-	-8
4.4	연간 피폭선량의 요약4-	13
V.	운영으로 인한 영향	-1
5.1	피폭경로	-3
5.2	피폭선량 평가	-5
VI.	사고로 인한 영향6	-1
6.1	사고의 가정6	-3
6.0	바 기 건 이 6_	11
6.3	평가방법6-	30
6.4	피폭선량 평가6-	32
6.5	피폭선량 평가 6- 주민보호 대책 6- 환경감시계획 7	35
VII.	환경감시계획7	-1
7.1	운영 전 환경감시7	-3
	운영 중 환경감시7	
VIII.	종합평가8	3-1
IV	71 =1	1 1
ΙΛ.	기 타9	1
6.1		. ^
	방사선환경영향평가서 작성기간9	
	평가서 작성기관	
9.3	환경영향평가 참여자 및 참여기관 명단	<i>i</i> −3

X. 참고문헌10-	1
요 약 문10	7
부 록11-	1
부 록 표11-	3
부록그림11-12	1

표 목 차

丑	1.1-1	국내의 발전설비, 전력수요, 최대전력 및 인구 1인당 전력소비량의 변화추이	. 1-3
丑	1.4-1	전력설비 시설용량 및 예비율 전망	1−7
丑	1.4-2	부지 내 기존 발전시설 현황	1-8
<u> </u>	1.4-3	공사 중 소음 및 진동 발생기기의 종류 및 규격	1-16
丑	2.1-1	부지 반경 16km 이내의 자연지형물과 인공구조물	2-5
丑	2.1-2	부지 내 주요구조물의 위치 및 배치	2-14
丑	2.1-3	영광 5,6호기 건물별 건축면적	2-17
丑	2.2-1	부지인근지역의 토지이용 현황	2-21
丑	2.2-2	국토이용관리법에 의한 용도지역구분	2-22
丑	2.2-3	용도지역별 국토이용계획	2-25
班	2.2-4	부지인근지역의 도시계획 현황	2-26
亚	2.2-5	지역별 방목기간	2-27
丑	2.2-6	재배목초의 종류 및 특성	2-28
丑	2.2-7	반경 10km이내 가축 사육현황	2-30
狂	2.2-8	부지반경 20km이내의 육류생산량	2-36
<u> </u>	2.2-9	부지반경 20km이내의 우유생산량	2-37
丑	2.2-10	반경 80km내 시·군별 초지 조성면적	2-41
丑	2.2-11	채소류 종류별 면적 및 생산량	2-43
丑	2.2-12	반경 20km이내 농산물 생산량	2-44
丑	2.2-13	영광군 및 고창군의 농산물 생산실적	2-46
丑	2.3-1	부지로부터 80km이내 주요지역에서의 어장분포	2-54
丑	2.3-2	영광군 양식장 현황	-2-55
丑	2.3-3	고창군 양식장 현황	2-55
丑	2.3-4	서천군 양식장 현황	-2-56
丑	2.3-5	군산시 양식장 현황	-2-56
丑	2.3-6	무안군 양식장 현황	-2-57
丑	2.3-7	서천군 어장 및 양식장 이용계획	-2-57
莊	2.3-8	군산시 어장 및 양식장 이용계획	-2-57
丑	2.3-9	전라남도 어장 및 양식장 이용계획	- 2-58

丑	2.3-10	부지반경 80km 이내의 해수욕장 이용객수	2-59
丑	2.3-11	영광군과 고창군의 해수욕객 이용현황	-2-59
丑	2.3-12	부지로부터 80km내 주요어항에서의 수산물 생산량	2-60
丑	2.3-13	연령군별에 따른 해변활동시간, 수영시간, 배타는 시간의 연간 평균 및 최대값	-2-61
丑	2.3-14	부자로부터 80km내 주요어항에서의 주민 활동사간	-2-61
丑	2.3-15	부지로부터 80km내 주요 해수욕장에서의 해수욕시간	2-61
丑	2.4-1	부지부근의 기상극치	-2-68
丑	2.4-2	부지 부근을 통과한 주요 태풍	-2-68
丑	2.4-3	측정기 신뢰한계	-2-70
丑	2.4-4	대기안정도의 분류	-2-72
丑	2.4-5	부지의 기상개황 (1994~1998)	-2-74
丑	2.4-6	월별 및 연평균 풍향발생빈도 (단위 : 0.1%)	- 2-77
丑	2.4-7	계절별 대기안정도의 발생빈도 (1995.1 ~ 1999.12)	. 2-78
丑	2.4-8	계절별 풍향빈도 (1995.1 ~ 1999.12)	. 2-78
丑	2.4-9	계절별 풍속등급에 따른 풍속빈도 (1995.1 ~ 1999.12)	-2-78
丑	2.4-10	계절별 대기안정도에 따른 정온빈도 (1995.1 ~ 1999.12)	2-78
丑	2.5-1	일반토양에 대한 핵종별 흡착계수	2-103
丑	2.5-2	각 구조물별 안정 지하수위	
丑	2.5-3	영광 5,6호기 주요 지역별 투수계수	2-106
丑	2.5-4	영광 5,6호기 부지의 암석에 대한 공극률	2-106
丑	2.6-1	물리해양 현장조사 내용 총괄표	2-118
丑	2.6-2	원전 주변 조사 시 사용된 주요 해양 물리 장비	2-122
丑	2.6-3	개방경계조건 산출에 사용된 조석조화상수	2-134
丑	2.6-4	모델의 계산조건	2-135
丑	2.6-5	환경문제를 유발할 수 있는 원전기원 핵종	2-138
丑	2.6-6	거리별 희석인자	2-140
丑	2.6-7	주요지점까지 이동시간	2-146
丑	2.6-8	비정상상태에서의 해양확산인자	2-148
丑	2.7-1	영광군의 연도별, 읍·면별 인구 및 가구수	2-154
丑	2.7-2	부지로부터 20km 이내의 행정단위별 인구	2-161
		성별·연령별 인구분포	
丑	2.7-4	직업별 인구현황	2-163
丑	2.7-5	영광군의 사회적, 자연적 인구변동	2-164

丑	2.7-6	고창군의 사회적, 자연적 인구변동	2-164
丑	2.7-7	부지로부터 20km 이내의 구역별 인구현황	2-165
丑	2.7-8	부지로부터 80km 이내의 행정단위별 인구현황	2-167
丑	2.7-9	부지로부터 20~80km 내의 구역별 인구현황	2-170
丑	2.7-10	부지반경 20km에서 80km사이의 성별, 연령군별 인구수	2-171
丑	2.7-11	월별 관광객 현황	··· 2-172
丑	2.7-12	1998년과 1999년의 영광군, 고창군 관광객 현황	2-173
丑	2.8-1	환경방사선 감시기에 의한 공간선량률	2-180
丑	2.8-2	휴대용계측기에 의한 공간선량률	2-181
丑	2.8-3	열형광선량계(TLD)에 의한 공간집적선량	2-183
丑	2.8-4	공기 중 미립자의 전베타 방사능	2-186
丑	2.8-5	공기 중 미립자의 감마동위원소	2-187
丑	2.8-6	공기 중 방사성옥소	2-190
丑	2.8-7	토양의 전베타 방사능	2-191
丑	2.8-8	토양의 감마동위원소	2-192
丑	2.8-9	토양의 스트론튬 방사능	2-194
丑	2.8-10	솔잎의 감마동위원소	2-195
莊	2.8-11		
丑	2.8-12	쑥의 감마동위원소	2-197
丑	2.8-13	해수의 전베타 방사능(직접증발법)	2-198
丑	2.8-14	해수의 감마동위원소	2-199
丑	2.8-15	해수의 삼중수소 방사능	2-201
丑	2.8-16	해수의 스트론튬 방사능	2-201
丑	2.8-17	지하수의 감마동위원소	2-202
丑	2.8-18	지하수의 삼중수소 방사능	2-202
丑	2.8-19	빗물의 전베타방사능	2-203
丑	2.8-20	· 빗물의 감마동위원소	2-204
丑	2.8-21	빗물의 삼중수소 방사능	2-205
丑	2.8-22	하천수의 감마동위원소	2-206
丑	2.8-23	하천수의 삼중수소 방사능	2-206
丑	2.8-24	! 해저토의 감마동위원소	2-207
丑	2.8-25	해저토의 스트론튬 방사능	2-209
丑	2.8-26	j 저생지표생물의 감마동위원소 (불가사리)	2-209

丑	2.8-26	저생지표생물의 감마동위원소 (게)	2-210
丑	2.8-27	양식장시료의 감마동위원소	2-211
丑	2.8-28	우유의 방사능 분석결과	2-212
丑	2.8-29	어류의 감마동위원소	2-213
丑	2.8-30	패류의 감마동위원소	2-215
丑	2.8-31	해조류의 감마동위원소	2-216
丑	2.8-32	어류의 스트론튬 방사능	2-219
丑	2.8-33	패류 스트론튬 방사능	2-219
丑	2.8-34	해조류 스트론튬 방사능	2-219
丑	2.8-35	곡류의 감마동위원소	2-221
丑	2.8-36	채소류의 감마동위원소	-2-222
丑	2.8-37	가금류(계란)의 감마동위원소	-2-223
丑	2.8-38	곡류의 스트론튬 방사능	-2-223
丑	2.8-39	채소류 스트론튬 방사능	-2-223
莊	3.2-1	핵설계 특성	3-16
丑	3.2-2	동력 변환계통 설계특성	3-18
丑	3.3-1	사용후연료저장조 냉각 및 정화계통 기기 설계값	3-28
丑.	3.3-2	사용후연료저장조 및 재장전수조내 설계기준 및 예상 비방사능	3-30
丑	3.3-3	사용후연료 감마선원	3-34
丑	3.3-4	원전연료건물 HVAC계통 기기설계값	3-39
丑	3.4-1	기체방사성폐기물처리계통 기기 사양	3-46
丑	3.4-2	기체방사성폐기물처리계통으로 유입되는 기체의 주요 발생원별 연간 발생량	3-49
丑	3.4-3	각 건물 환기계통으로 방출되는 예상 방출량	3-50
丑	3.4-4	기체폐기물처리계통으로 방출되는 예상방출량	3-51
丑	3.4-5	기체폐기물처리계통에서 연간 방출되는 방사능량	3-53
丑	3.4-6	액체방사성폐기물처리계통 주요 펌프의 특징과 제원	3-55
丑	3.4-7	액체방사성폐기물처리계통 주요 탱크의 특징과 제원	3-56
丑	3.4-8	액체방사성폐기물처리계통 주요 처리설비의 특징과 제원	3-56
丑	3.4-9	액체방사성폐기물처리계통 폐기물 유입량	3-60
丑	3.4-10	액체방사성폐기물처리계통 주요기기 제염계수	3-61
丑	3.4-11	액체방사성폐기물처리계통에서 연간 방출되는 방사능량	3-64
丑	3.4-12	고체방사성폐기물처리계통 주요기기 사양	3-70
丑	3.4-13	고체방사성폐기물처리계통에서 처리되는 폐기물량	3-71

丑	3.4-14	각 건물별 공정 및 유출물 감시기3-73	
莊	3.4-15	기체방출물 연속감시 적용지점 감시기3-75	
丑	3.4-16	시료채취 적용지점 감시기3-76	
丑	3.4-17	연속감시, 시료채 방법 적용지점 감시기3-77	
丑	3.4-18	액체방출물 감시기3-78	
丑	3.4-19	액체방사성폐기물 시료채취 및 분석계획3-80	
丑	3.4-20	기체방사성폐기물 시료채취 및 분석계획3-81	
丑	3.4-21	지역방사선 감시계통3-82	
丑	3.5-1	원자로냉각재의 방사능농도 계산에 필요한 변수3-88	
丑	3.5-2	정상가동 시 원자로냉각재내의 예상 방사능농도3-89	
丑	3.5-3	사용후연료 저장조 및 재장전수조의 예상 방사능농도3-90	
丑	3.5-4	증기발생기 2차측의 방사능농도 계산에 필요한 변수3-91	
丑	3.5-5	2차측의 액체상 및 기체상에 대한 방사능농도3-92	
丑	3.5-6	삼중수소 생성의 방사화반응3-94	
丑	3.5-7	삼중수소의 생성 계산에 사용된 변수3-95	
丑	3.5-8	원자로냉각재내 삼중수소의 생성3-95	
丑	3.5-9	원자로냉각재계통내 N-16의 방사능	
<u> </u>	3.5-10	예상되는 폐수지량	
丑	3.5-11	고체방사성폐기물처리계통으로 이송되는 이온교환기의 예상 방사능농도3-98	
丑	3.5-12	기체방사성폐기물처리계통에서 연간 방출되는 방사능량 및 방출농도3-100	
丑	3.5-13	각 배기구별 위치, 고도, 방출량, 방출온도3-101	
丑	3.5-14	울진 3,4호기 기체방사성폐기물처리계통에서 연간 방출되는 방사능량3-102	
丑	3.5-15	액체방사성폐기물처리계통에서 연간 방출되는 방사능량 및 방출농도3-103	
丑	3.5-16	울진 3,4호기 액체방사성폐기물처리계통에서 연간 방출되는 방사능량3-104	
丑	4.2-1	건설기간별 예상 건설작업자수4-8	
丑	4.2-2	건설기간 동안 방사성물질 방출원으로부터 작업자까지의 거리4-8	
丑	4.3-1	각 호기에 대한 건설작업 지점에서의 대기확산인자4-9	
丑	4.3-2	처음 4년의 건설기간 동안 방사능운에 의해 건설작업자가 받는 피폭선량4-9	
丑	4.3-3	건설 마지막 해 건설기간동안 방사능운에 의해 건설작업자가 받는 피폭선량4-10	
丑	4.3-4	각 호기에 대한 건설작업 지점에서의 지표면 침적인자4-10	
丑	4.3-5	처음 4년의 건설기간 동안 지표면에 침적된 방사능에 의해 건설작업자가 받는 피폭선량 4-11	
丑	4.3-6	건설 마지막 해 지표면에 침적된 방사능에 의해 건설작업자가 받는 피폭선량4-11	
丑	4.3-7	건설작업자의 직접선량 계산에 사용된 변수 값4-12	

班 4.	.3-8	건설기간 동안 직접피폭에 의해 건설작업자가 받는 피폭선량	4-13
班 4.	.4-1	건설작업자의 연간 최대개인피폭선량	4-13
班 4.	.4-2	모든 건설작업자에 대한 연간 총 집단피폭선량	1-14
H 5	.2-1	연령군별 평균인의 연간 음식물 섭취량	5-7
丑 5	.2-2	연령군별 최대개인의 연간 음식물 섭취량 및 활동시간	5-7
班 5	.2-3	부지특성자료	-5-8
丑 5	.2-4	기체방출물에 의한 피폭경로별 개인피폭선량	5-10
丑 5	.2-5	기체방출물에 의한 피폭경로별 대중집단선량	5-11
班 5	.2-6	액체방류물에 의한 피폭경로별 최대개인 피폭선량	5-12
班 5	5.2-7	액체방류물에 의한 피폭경로별 대중집단선량	5-13
丑 5	5.2-8	개인피폭선량 계산결과와 과기부고시 2001-2호의 선량제한치와 비교	5-16
班 5	5.2-9	전체호기 가동 시 개인피폭선량 계산결과와 과기부고시 2001-2호와의 비교	5-16
丑 6	5.1-1	사고유형 분류	-6-4
班 6	5.2-1	기체폐기물저장탱크 내 방사선원	6-14
丑 6	5.2-2	액체폐기물저장팽크 내 방사선원	6-15
丑 6	5.2-3	Class 3 사고에 대한 방사능 방출량	6-15
丑 6	5.2-4	과도사고 전 원자로냉각재 및 2차측 증기 내 평형 방사능농도	6-17
丑 (6.2-5	Class 5 사고에 대한 방사능 방출랑	6-19
H (6.2-6	Class 6 사고에 대한 방사능 방출량	6-21
丑 (6.2-7	Class 7 사고에 대한 방사능 방출량	6-23
丑 (5.2-8	Class 8 사고에 대한 방사능 방출량	6-27
丑 (6.2-9	SGTR + w/o Loop 사고시 방사능 선원평가에 필요한 입력자료	6-28
丑 (5.2-10	SLB 사고시 방사능 선원평가에 필요한 입력자료	6-29
丑 (6.4-1	사고유형별 선량평가 요약	6-33
丑 (6.4-2	사고 전기간 동안 저인구지대 외곽경계에서 사고유형별 선량평가 요약	6-34
丑	7.1-1	환경방사능 시료채취지점 및 선정사유	7-9
丑(7.1-2	공간선량율 및 공간집적선량 측정지점	7-12
丑 ′	7.1-3	환경방사선/능 조사방법	7-15
丑 ′	7.1-4	과학기술부 고시 제1996-31호에 제시된 환경방사선/능 조사요령	7-20
班 '	7.2-1	C-14 방출감시 및 환경감시 계획 추진일정	7-21

그 림 목 차

그림 1.4-1	사업지역의 위치	1-5
그림 1.4-2	주요시설물 배치계획	1-13
그림 2.1-1	부지위치도	2-7
그림 2.1-2	부지지역도	2-11
그림 2.1-3	부지경계선 및 제한구역경계	2-13
그림 2.1-4	영광 5,6호기 주요시설물 배치도	2-15
그림 2.2-1	부지반경 10km 이내의 토지이용도	2-23
그림 2.2-2	반경 10km이내의 행정구역(리)별 한우 사육두수	2-32
그림 2.2-3	반경 10km 이내의 행정구역(리)별 젖소 사육두수	2-33
그림 2.2-4	반경 10km 이내의 행정구역(리)별 돼지 사육두수	2-34
그림 2.2-5	반경 20km이내의 육류생산량	2-38
그림 2.2-6	반경 20km 이내의 우유생산량	2-39
그림 2.2-7	반경 20km이내의 농산물 생산량	2-45
그림 2.3-1	주요 어항의 분포	2-50
그림 2.3-2	발전소 주변의 어장분포	2-51
그림 2.3-3	발전소로부터 80km 이내의 어장분포	2-52
그림 2.3-4	주요 어종의 회유경로, 월동장 및 산란장	2-53
그림 2.4-1	부지 주위의 기상 관측소 위치	2-67
그림 2.4-2	부지의 월별 강수량 분포 (1994.1 ~ 1998.12)	2-75
그림 2.4-3	부지의 연평균 풍향 발생빈도 (1994.1 ~ 1998.12)	2-75
그림 2.4-4	부지의 여름철 풍향 발생빈도	2-76
그림 2.4-5	부지의 겨울철 풍향 발생빈도	2-76
그림 2.4-6	부지로부터 반경 80km 이내에 지형도	2-79
그림 2.4-7	각 방향에 따른 부지로부터 반경 10km 이내에 지형 종단면도.	2-91
그림 2.5-1	부지 인근의 지표수 수계도	2-99
그림 2.5-2	영광원전 배수계통도	2-101
그림 2.5-3	지하수위 등고선도	2-107
그림 2.5-4	지하수위 관측결과	2-108
그림 2.5-5	시추위치도	2-111

그림 2.6-1	희석인자 분포도	2-117
그림 2.6-2	모델의 계산영역과 격자	2-132
그림 2.6-3	모델의 계산에 사용된 수심	2-133
그림 2.6-4	비정상상태에서의 해양확산도	2-150
그림 2.7-1	영광군, 고창군 인구추이	2-156
그림 2.7-2	부지주변의 읍·면별 인구분포	2-158
그림 2.7-3	20km 이내의 주요 인구밀집지	2-159
그림 2.7-4	영광군 및 고창군의 성별 인구분포	2-160
그림 2.7-5	반경 20km 이내의 구역별 인구현황	2-166
그림 2.7-6	부지로부터 80km 이내의 행정구역별 인구 및 가구수	2-168
그림 2.7-7	반경 20-80km 사이의 구역별 인구현황	2-169
그림 2.7-8	부지반경 20km에서 80km사이의 성별, 연령군별 인구분포	2-171
그림 2.7-9	영광군 관광객 추이	2-174
그림 2.8-1	환경방사선감시기에 의한 공간선량률	2-184
그림 2.8-2	휴대용계측기에 의한 공간선량률	2-185
그림 2.8-3	열형광선량계(TLD)에 의한 공간집적선량률	2-185
그림 2.8-4	공기중미립자의 전베타방사능	2-187
그림 3.1-1	영광원자력 5,6호기 건물배치도	3-6
그림 3.1-2	기체방사성폐기물 방출구	3-9
그림 3.2-1	초기노심 핵연료 장전모형	3-14
그림 3.2-2	초기노심 장전 핵연료의 농축도 및 가연성 독물질의 배치도	3-15
그림 3.2-3	핵증기공급계통	3-19
그림 3.2-4	증기 및 동력 변환계통	3-20
그림 3.2-5	보증출력 조건시 터빈싸이클 열평형도	3-21
그림 3.3-1	사용후연료저장조 냉각 및 정화계통	3-32
그림 3.3-2	원전연료건물 HVAC 계통 (1/2)	3-37
그림 3.3-2	원전연료건물 HVAC 계통 (2/2)	3–38
그림 3.4-1	기체방사성폐기물처리계통 흐름도	3-47
그림 3.4-2	액체방사성폐기물처리계통 흐름도 (1/2)	3-57
그림 3.4-2	액체방사성폐기물처리계통 흐름도 (2/2)	3-58
그림 3.4-3	고체방사성폐기물처리계통 흐름도 (1/2)	3-68
그림 3.4-3	고체방사성폐기물처리계통 흐름도 (2/2)	3-69
그림 3.4-4	방사선감시계통 배관 및 계장도	3-74

그림 5.1-1	생물에 대한 피폭경로	5-4
그림 5.1-2	인간에 대한 피폭경로	5-6
그림 7.1-1	환경방사능 감시를 위한 부지내부의 시료채취지점 위치도	7-5
그림 7.1-2	환경방사능 감시를 위한 부지주변의 시료채취지점 위치도	7-7

부 록 표 목 차

부록표	2.2-1	반경 20~80km 사이의 구역별 육류생산량	11-5
부록표	2.2-2	반경 20~80km 사이의 구역별 우유생산량	11-6
부록표	2.2-3	반경 20~80km 사이의 구역별 농산물 생산량	11-7
부록표	2.4-1	광주지역의 기상개황	11-8
부록표	2.4-2	목포지역의 기상개황	11-9
부록표	2.4-3	광주의 풍향별 월평균 발생빈도 (1961~1998)1	1-10
부록표	2.4-4	목포의 풍향별 월평균 발생빈도 (1961~1998)1	1-11
부록표	2.4-5	광주의 풍향별 월평균 풍속 (1961~1998)1	1-12
부록표	2.4-6	목포의 풍향별 월평균 풍속 (1961~1998)]	1-13
부록표	2.4-7	봄철 대기안정도, 풍향 및 풍속의 빈도분포	1-14
부록표	2.4-8	여름철 대기안정도, 풍향 및 풍속의 빈도분포1	11-16
부록표	2.4-9	가을철 대기안정도, 풍향 및 풍속의 빈도분포]	11-18
부록표	2.4-10	겨울철 대기안정도, 풍향 및 풍속의 빈도분포]	11-20
부록표	2.4-11	전년 대기안정도, 풍향 및 풍속의 빈도분포]	11-22
부록표	2.4-12	방향별, 거리에 따른 지형고도]	11-24
부록표	2.4-13	방사능 붕괴 및 Plume 감쇄를 무시한 거리별 X/Q]	11-25
부록표	2.4-14	방사능 붕괴 및 Plume 감쇄를 무시한 소구역별 X/Q]	11-27
부록표	2.4-15	방사능 붕괴 (반감기 2.26일) 만을 고려한 거리별 X/Q	11-28
부록표	2.4-16	방사능붕괴 (반감기 2.26일) 만을 고려한 소구역별 X/Q	11-30
부록표	2.4-17	방사능붕괴 (반감기 8일) 및 Plume 감쇄를 고려한 거리별 X/Q]	11-31
부록표	2.4-18	방사능붕괴 (반감기 8일) 및 Plume 감쇄를 고려한 소구역별 X/Q 1	11-33
부록표	2.4-19	거리별 D/Q	11-34
부록표	2.4-20	소구역별 D/Q	11-36
부록표	2.4-21	부지의 중첩경계거리에서 X/Q 및 D/Q	11-37
부록표	2.4-22	LPZ 경계(5700m)에서 X/Q 및 D/Q	11-38
부록표	2.4-23	사고후 시간별, 거리별 대기확산인자	11-39
부록표	2.4-24	제한구역(560m)에서 사고후 시간별, 거리별 대기확산인자	11-61
부록표	2.4-25	LPZ 경계(5700m)에서 사고후 시간별, 거리별 대기확산인자	11-62
부록표	2.4-26	사고후 0~2시간 동안 소구역별 대기확산인자	11-63

부록표 2.4-27	사고후 2~8시간 동안 소구역별 대기확산인자11-64
부록표 2.4-28	사고후 8시간~1일 동안 소구역별 대기확산인자11-65
부록표 2.4-29	사고후 1~4일 동안 소구역별 대기확산인자11-66
부록표 2.4-30	사고후 4~30일 동안 소구역별 대기확산인자11-67
부록표 2.4-31	제한구역(560m)에서사고.후 시간별, 거리별대기확산인자11-68
부록표 2.4-32	LPZ 경계(5700m)에서 사고 후 시간별, 거리별 대기확산인자11-69
부록표 2.4-33	사고후 0~2시간 동안 소구역별 대기확산인자11-70
부록표 2.4-34	사고후 2~8시간 동안 소구역별 대기확산인자11-71
부록표 2.4-35	5 사고후 8시간~1일 동안 소구역별 대기확산인자11-72
부록표 2.4-36	5 사고후 1~4일 동안 소구역별 대기확산인자11-73
부록표 2.4-37	7 사고후 4~30일 동안 소구역별 대기확산인자11-74
부록표 2.6-1	영광원자력발전소 주변해역의 표층 수온관측 위치와 값11-75
부록표 2.6-2	영광원자력발전소 주변해역의 표층 수온관측 위치와 값11-76
부록표 2.6-3	영광원자력발전소 주변해역의 수온관측 위치와 값11-77
부록표 2.6-4	영광원자력발전소 주변해역의 표층 수온관측 위치와 값11-78
부록표 2.6-5	영광원자력발전소 주변해역의 표층 수온관측 위치와 값11-79
부록표 2.6-6	영광원자력발전소 주변해역의 표층 수온관측 위치와 값11-80
부록표 2.6-7	영광원자력발전소 주변해역의 표층 수온관측 위치와 값11-81
부록표 2.6-8	영광원자력발전소 주변해역의 표층 수온관측 위치와 값11-82
부록표 2.6-9	영광원자력발전소 주변해역의 수심별 수온(℃)분포11-83
부록표 2.6-10) 영광원자력발전소 주변해역의 수심별 수온(℃)분포11-83
부록표 2.6-1	l 영광원자력발전소 주변해역의 수심별 수온(℃)분포11-84
부록표 2.6-12	2 영광원자력발전소 주변해역의 수심별 수온(℃)분포11-84
부록표 2.6-13	8 영광원자력발전소 주변해역의 수심별 수온(℃)분포(동계 밀물 시)11-85
부록표 2.6-1	4 영광원자력발전소 주변해역의 수심별 수온(℃)분포(동계 썰물 시)11-85
부록표 2.6-1	5 영광원자력발전소 주변해역의 수심별 수온(℃)분포(춘계 밀물 시)11-86
부록표 2.6-10	6 영광원자력발전소 주변해역의 수심별 수온(℃)분포(춘계 썰물 시)11-86
부록표 2.6-1	7 영광원자력발전소 주변해역의 표층 염분관측 위치와 값11-87
부록표 2.6-1	8 영광원자력발전소 주변해역의 표층 염분관측 위치와 값11-88
부록표 2.6-1	9 영광원자력발전소 주변해역의 염분관측 위치와 값11-89
부록표 2.6-2	
부록표 2.6-2	1 영광원자력발전소 주변해역의 표층 염분관측 위치와 값11-91
부록표 2.6-2	2 영광원자력발전소 주변해역의 표층 염분관측 위치와 값11-92

부록표 2.6-23	영광원자력발전소 주변해역의 표층 염분관측 위치와 값11-93
부록표 2.6-24	영광원자력발전소 주변해역의 표층 염분관측 위치와 값11-94
부록표 2.6-25	영광원자력발전소 주변해역의 수심별 염분(‰)분포11-95
부록표 2.6-26	영광원자력발전소 주변해역의 수심별 염분(‰)분포11-95
부록표 2.6-27	영광원자력발전소 주변해역의 수심별 염분(‰)분포11-96
부록표 2.6-28	영광원자력발전소 주변해역의 수심별 염분(%)분포11-96
부록표 2.6-29	영광원자력발전소 주변해역의 수심별 염분(%)분포(동계 밀물 시)11-97
부록표 2.6-30	영광원자력발전소 주변해역의 수심별 염분(%)분포(동계 썰물 시)11-97
부록표 2.6-31	영광원자력발전소 주변해역의 수심별 염분(%)분포(춘계 밀물 시)11-98
부록표 2.6-32	영광원자력발전소 주변해역의 수심별 염분(%)분포(춘계 썰물 시)11-98
부록표 2.6-33	영광원자력발전소 주변해역의 유향·유속계 설치(하계)11-99
부록표 2.6-34	영광원자력발전소 주변의 유향・유속의 분포(하계)11-99
부록표 2.6-35	영광원자력발전소 주변해역의 유향·유속계 설치(추계)11-100
부록표 2.6-36	영광원자력발전소 주변의 유향·유속의 분포(추계)11-100
부록표 2.6-37	영광원자력발전소 주변해역의 부표추적조사11-101
부록표 2.6-38	영광원자력발전소 주변해역의 부표추적조사11-101
부록표 2.6-39	영광원자력발전소 주변해역의 부표추적조사(동계 밀물 시)11-102
부록표 2.6-40	영광원자력발전소 주변해역의 부표추적조사(동계 썰물 시)11-102
부록표 2.6-41	영광원자력발전소 주변해역의 부표추적조사(춘계 밀물 시)11-103
부록표 2.6-42	영광원자력발전소 주변해역의 부표추적조사(춘계 썰물 시) 11-103
부록표 2.6-43	영광원자력발전소 주변 일반환경 조사기간 중의 조석현황11-104
부록표 2.6-44	1998년 하계 영광원전주변 해양퇴적물 금속원소 분석자료11-105
부록표 2.6-45	1998년 추계 영광원전주변 해양퇴적물 금속원소 분석자료11-105
부록표 2.6-46	1999년 동계 영광원전주변 해양퇴적물 금속원소 분석자료11-106
부록표 2.6-47	1999년 춘계 영광원전주변 해양퇴적물 금속원소 분석자료11-106
부록표 2.6-48	우리나라 주변 퇴적물과 평균지각에서의 평균값11-107
부록표 2.6-49	겨울철(1997. 1) 및 여름철(1997. 8) 표층퇴적물 및 부유물질 함량범위와 평균 11-108
부록표 2.7-1	반경 20km 이내의 2002년 인구예측11-110
부록표 2.7-2	반경 20km 이내의 2012년 인구예측11-111
부록표 2.7-3	반경 20km 이내의 2022년 인구예측11-112
부록표 2.7-4	반경 20km 이내의 2032년 인구예측11-113
부록표 2.7-5	반경 20km 이내의 2042년 인구예측11-114
부록표 2.7-6	반경 20~80km 사이의 2002년 인구예측11-115

11-116	인구예측	2012년	사이의	$20 \sim 80 \text{km}$	반경	2.7-7	부록표
11-117	인구예측	2022년	사이의	20~80km	반경	2.7-8	부록표
11-118	인구예측	2032년	사이의	20~80km	반경	2.7-9	부록표
축11-119	인구예측] 2042년	ı 사이의	₹ 20~80kn	반경	2.7-10	부록표

부 록 그 림 목 차

무독그림	2.2-1	반경 20~80km 사이의 구역별 육류생산량11-123
부록그림	2.2-2	반경 20~80km 사이의 우유생산량11-124
부록그림	2.2-3	반경 20~80km 사이의 구역별 농산물 생산량11-125
부록그림	2.4-1	부지의 중첩경계에서 대기확산 인자11-126
부록그림	2.4-2	LPZ 경계(5700m)에서 대기확산 인자11-127
부록그림	2.4-3	부지의 중첩경계에서 대기확산 인자 (정상운영 시 대기확산인자를
		XOQ_DW 코드 결과 이용하지 않은 경우)11-128
부록그림	2.4-4	LPZ 경계(5700m)에서 대기확산 인자 (정상운영 시 대기확산인자를
		XOQ_DW 코드 결과 이용하지 않은 경우)11-129
부록그림	2.6-1	영광원자력발전소 주변 표층수온 및 염분 관측점(하계)11-130
부록그림	2.6-2	영광원자력발전소 주변 표층수온 분포(하게 밀물 시)11-131
부록그림	2.6-3	영광원자력발전소 주변 표층수온 분포(하계 썰물 시)11-132
부록그림	2.6-4	영광원자력발전소 주변 표층수온 및 염분 관측점(추계)11-133
부록그림	2.6-5	영광원자력발전소 주변 표층수온 분포(추계 밀물 시)11-134
부록그림	2.6-6	영광원자력발전소 주변 표층수온 분포(추계 썰물 시)11-135
부록그림	2.6-7	영광원자력발전소 주변 수온 및 염분 관측정점11-136
부록그림	2.6-8-	A 영광원자력발전소 주변 해역의 표층수온 분포(밀물 시)11-137
부록그림	2.6-8-	B 영광원자력발전소 주변 해역의 표층수온 분포(썰물 시)11-138
부록그림	2.6-9	영광원자력발전소 주변 수온 및 염분 관측정점11-139
부록그림	2.6-10	-A 영광원자력발전소 주변 해역의 표총수온 분포(밀물 시)11-140
부록그림	2.6-10	-B 영광원자력발전소 주변 해역의 표층수온 분포(썰물 시)11-141
부록그림	2.6-11	영광원자력발전소 주변 표층수온 및 염분 관측점(하계)11-142
부록그림	2.6-12	영광원자력발전소 주변해역의 수심별 수온 및 염분분포(하계 밀물 시) 11-143
부록그림	2.6-13	영광원자력발전소 주변해역의 수심별 수온 및 염분분포(하계 썰물 시) 11-144
부록그림	2.6-14	영광원자력발전소 주변 표층수온 및 염분 관측점11-145
부록그림	2.6-15	영광원자력발전소 주변해역의 수심별 수온 및 염분분포(추계 밀물 시) 11-146
부록그림	2.6-16	영광원자력발전소 주변해역의 수심별 수온 및 염분분포(추계 썰물 시) 11-148
부록그림	2.6-17	영광원자력발전소 주변 표층수온 및 염분 관측점11-150
부록그림	2.6-18	수심별 수온 및 염분분포(동계 밀물 시)11-151

부록그림	2.6-19	수심별 수온 및 염분분포(동계 썰물 시)	11-153
부록그림	2.6-20	영광원자력발전소 주변 수온 및 염분 관측정점	11-155
부록그림	2.6-21	수심별 수온 및 염분분포(춘계 밀물 시)	11-156
부록그림	2.6-22	수심별 수온 및 염분분포(춘계 썰물 시)	11-158
부록그림	2.6-23	영광원자력발전소 주변 표충수온 및 염분 관측점	11-160
부록그림	2.6-24	영광원자력발전소 주변 표충염분 분포(하계 밀물 시)	11-161
부록그림	2.6-25	영광원자력발전소 주변 표층염분 분포(하계 썰물 시)	11-162
부록그림	2.6-26	영광원자력발전소 주변 표층수온 및 염분 관측점(추계)	11-163
부록그림	2.6-27	영광원자력발전소 주변 표층염분 분포(추계 밀물 시)	11-164
부록그림	2.6-28	영광원자력발전소 주변 표층염분 분포(추계 썰물 시)	11-165
부록그림	2.6-29	영광원자력발전소 주변 수온 및 염분 관측정점(동계)	11-166
부록그림	2.6-30-	-A 영광원자력발전소 주변해역의 표층염분 분포(밀물 시)	11-167
부록그림	2.6-30-	-B 영광원자력발전소 주변해역의 표층염분 분포(썰물 시)	11-168
부록그림	2.6-31	영광원자력발전소 주변 수온 및 염분 관측정점	11-169
부록그림	2.6-32-	-A 영광원자력발전소 주변해역의 표충염분 분포(밀물 시)	11-170
부록그림	2.6-32-	-B 영광원자력발전소 주변해역의 표층염분 분포(썰물 시)	11-171
부록그림	2.6-33	영광원자력발전소 주변 표층수온 및 염분 관측점(하계)	11-172
부록그림	2.6-34	영광원자력발전소 주변해역의 수심별 수온 및 염분분포(하계 밀물	시) 11-173
부록그립	2.6-35	영광원자력발전소 주변해역의 수심별 수온 및 염분분포(하게 썰물	۸) 11-174
부록그림	2.6-36	영광원자력발전소 주변 표층수온 및 염분 관측점(추계)	11-175
부록그림	2.6-37	영광원자력발전소 주변해역의 수심별 수온 및 염분 분포(추계 밀물	시) 11-176
부록그림	2.6-38	영광원자력발전소 주변해역의 수심별 수온 및 염분분포(추계 썰물	시) 11-178
부록그림	2.6-39	영광원자력발전소 주변 수온 및 염분 관측정점	11-180
부록그림	2.6-40	수심별 수온 및 염분분포(동계 밀물 시)	11-181
부록그림	2.6-41	수심별 수온 및 염분분포(동계 썰물 시)	11-183
부록그림	2.6-42	영광원자력발전소 주변 수온 및 염분 관측정점	11-185
부록그림	2.6-43	수심별 수온 및 염분분포(춘계 밀물 시)	11-186
부록그림	2.6-44	수심별 수온 및 염분분포(춘계 썰물 시)	11-188
부록그림	2.6-45	영광원자력발전소 주변 연속측류점	11-190
부록그림	2.6-48	영광원자력발전소 A점 표층해류 변동(하계)	11-191
부록그림	2.6-49	영광원자력발전소 주변 연속측류점	11-192
부록그림	2.6-51	영광원자력발전소 A점의 유향·유속의 시간별 분포도(추	계) 11-193
부록그림	2.6-52	영광원자력발전소 A점 표층해류 변동(추계)	11-194

부록그림	2.6-53	명광원자력발	전소 주변	표층용	부표 이	동경로(하	계 밀물	- 시)11-195
부록그림	2.6-54	영광원자력발	전소 주변	표층용	부표 이	동경로(하	계 썰물	- 시) …11-196
부록그림	2.6-55-A	영광원자력	발전소 주변	표층용 1	부표 이	동경로(동계	밀물 시	1) 11-197
부록그림	2.6-55-B	영광원자력	발전소 주변	표층용 년	루표 이	동경로(동계	썰물 시])11-198
부록그림	2.6-56-A	영광원자력	발전소 주변	표층용 1	부표 아	동경로(춘계	밀물 시	11-199
부록그림	2.6-56-B	영광원자력	발전소 주변	표층용 년	부표 이	동경로(춘계	썰물 시])11-200
부록그림	2.6-57	명광원자력발	전소 주변	해역에서	의 저질	· 조사정점		11-201
부록그림	2.6-58	겨울철(1 99 7.	1) 및 여름	·철(1997.	8) 부-	유물 시료	채취 정	성점 11-202
부록그림	2.6-59	경광 근해의	수심분포도	<u> </u>			• • • • • • • • • • • • • •	11-203
부록그림	2.6-60	춘계 대조시	표층 평균	유속분포				11-204
부록그림	2.6-61	춘계 대조시	저층 평균	유속분포				11-205
부록그림	2.6-62	훈계 소조시	표층 평균	유속분포				11-206
부록그림	2.6-63	춘계 소조시	저층 평균	유속분포				11-207
부록그림	2.6-64	하계 대조시	표층 평균	유속분포		**********	* * * * * * * * * * * * *	11-208
부록그림	2.6-65	하계 대조시	저층 평균	유속분포	********	********	**********	11-209
부록그림	2.6-66	하계 소조시	표층 평균	유속분포	10000000000			11-210
부록그림	2.6-67	하계 소조시	저층 평균	유속분포			**********	11-211
부록그림	2.6-68	추계 대조시	표층 평균	유속분포			***********	11-212
부록그림	2.6-69	추계 대조시	저층 평균	유속분포				11-213
부목그림	2.6-70	추계 소조시	표층 평균	유속분포	*******			11-214
부록그림	2.6-71	추계 소조시	저층 평균	유속분포		***************		11-215
부록그림	2.6-72	동계 대조시	표층 평균	유속분포	**********		*******	11-216
부록그림	2.6-73	동계 대조시	저층 평균	유속분포			***********	11-217
부록그림	2.6-74	동계 소조시	표층 평균	유속분도	<u> </u>			11-218
부록그림	2.6-75	동계 소조시	저층 평균	유속분포				11-219
부록그림	2.6-76	춘계 대조시	해양확산	분포도				11-220
부록그림	2.6-77	춘계 소조시	해양확산	분포도				11-221
부록그림	2.6-78	하계 대조시	해양확산	분포도				11-222
부록그림	2.6-79	하계 소조시	해양확산	분포도				11-223
부록그림	2.6-80	추계 대조시	해양확산	분포도				11-224
부록그림	2.6-81	추계 소조시	해양확산	분포도				11-225
부록그림	2.6-82	동계 대조시	해양확산	분포도				11-226
부록그림	2.6-83	동계 소조시	해양확산	분포도				11-227

부록그림	2.7-1	반경	20km 이니	의 200	2년 인구	예측		11-228
부록그림	2.7-2	반경	20km 이니	의 201	2년 인구	예측		11-229
부록그림	2.7-3	반경	20km 이니	의 202	2년 인구	예측		11-230
부록그림	2.7-4	반경	20km 이니	의 203	2년 인구	예측	*******	11-231
부록그림	2.7-5	반경	20km 이니	1의 204	2년 인구	- 예측		11-232
부록그림	2.7-6	반경	20~80km	사이의	2002년	인구	예측 .	11-233
부록그림	2.7-7	반경	20~80km	사이의	2012년	인구	예측 .	11-234
부록그림	2.7-8	반경	20~80km	사이의	2022년	인구	예측 .	11-235
부록그림	2.7-9	반경	20~80km	사이의	2032년	인구	예측 .	11-236
부로그리	27-10	出力	1 20~80km	사이의	2) 20421	이구	예측	11-237

1. 발전소 건설계획의 개요

1. 발전소 건설계획의 개요

1.1 발전소 건설의 필요성

우리 나라의 전력수요는 최근 10년간 연평균 10% 이상의 지속적인 증가추세를 보이고 있다. 1961년에 1,189GWh에 불과하던 전력수요가 1970년 7,740GWh, 1980년 32,734GWh, 1990년 94,383GWh, 1998년 193,470GWh로 늘어나 지난 38년 동안 약 162배 이상의 성장률을 보였고, 최대전력도 1961년의 306MW에서 1998년의 32,996MW로 108배의 성장을 나타냈다. 또한 국민 1인당 전력소비량은 1961년에 46KWh에서 1998년에는 4,167KWh로 90배 이상크게 증가하였으나, 미국, 영국, 프랑스 일본 등 선진국과 비교해 볼 때 향후 전력수요 성장의 잠재력은 아직도 매우 크다고 할 수 있다.

표 1.1-1 국내의 발전설비, 전력수요, 최대전력 및 인구 1인당 전력소비량의 변화추이

구 분	1961년	1970년	1980년	1990년	1998년
발전설비 (MW)	367	2,508	9,391	21,021	43,406
전력수요 (GWh)	1,189	7,740	32,734	94,383	193,470
최대전력 (MW)	306	1,555	5,457	17,252	32,996
1인당 소비전력량 (KWh/명)	46	240	859	2,202	4,167

자료: 한국전력공사 한국전력통계, 1999.

이와 같은 급격한 전력수요에 대처하기 위하여 정부에서는 지속적인 전원개발을 추진하고 있으며 1998년부터 2015년까지의 장기전력수급계획을 수립하였다.(산업자원부, 1998, 제4차장기전력수급계획(1998~2015)). 이에 따르면 향후 경제성장률은 2001년부터 2005년까지는 6.0%, 2006년부터 2010년까지는 5.0%, 2010년부터 2015년까지는 4.3%로 예측되며, 이에 따른 전력수요 증가율은 1998~2015년까지 평균 3.8%로 증가될 것으로 예상된다. 이와 같은 전력수요증가에 대비하기 위하여 지속적인 발전소건설이 추진되어야 하며, 특히 연료비가 저렴한 에너지로서 공급 안정성이 우수하며, 무역수지 개선과 CO_2 감축효과가 우수한 원자력발전소 건설은 불가피한 실정이다.

본 사업은 1998년도 장기전력수급계획에 따라 각각 2002년 준공목표로 1000 MW급 가압경수로 2기를 건설하는 것이다. 이것은 2015년 원자력 구성비를 '98년 말 기준 27.5%에서 34.2%로 상향함에 따라 에너지원 다원화 등 전력공급전략상 적정 원자력 구성비를 확보하고 국내 산업의 기술자립기반 확충과 원전의 국제경쟁력 확보 및 준 국산 에너지의 확대로에 기여하게 될 것이다.

1.2 운영허가 신청시 방사선환경영향평가 실시근거

원자력법 제 21조 제 2항에 의거 운영허가 신청시 방사선환경영향평가서(제11조 제2항의 규정에 의하여 제출된 방사선환경영향평가서와 달라진 부분에 한한다)를 작성, 과학기술부 장관에게 제출하여야 한다.<개정 95.1.5, 99.2.8>

1.3 사업의 추진 경위

o 1993. 3. : 영광원자력 5,6호기 건설사업 환경영향평가 착수

o 1996. 6. : 환경영향평가서 작성 및 제출

o 1996. 9. : 본관기초굴착

o 1997. 6. : 기초콘크리트 타설(5호기)

o 2001, 10.: 5호기 원자력연료 장전(예정)

o 2002. 4. : 5호기 준공(예정)

2002. 12. : 6호기 준공(예정)

1.4 발전소 건설계획

1.4.1 명칭

o 영광원자력발전소 5,6호기 건설사업

1.4.2 소재지

- o 전라남도 영광군 홍농읍 계마리(그림 1. 4-1)
- o 영광원자력 3, 4호기 인접 후속기부지

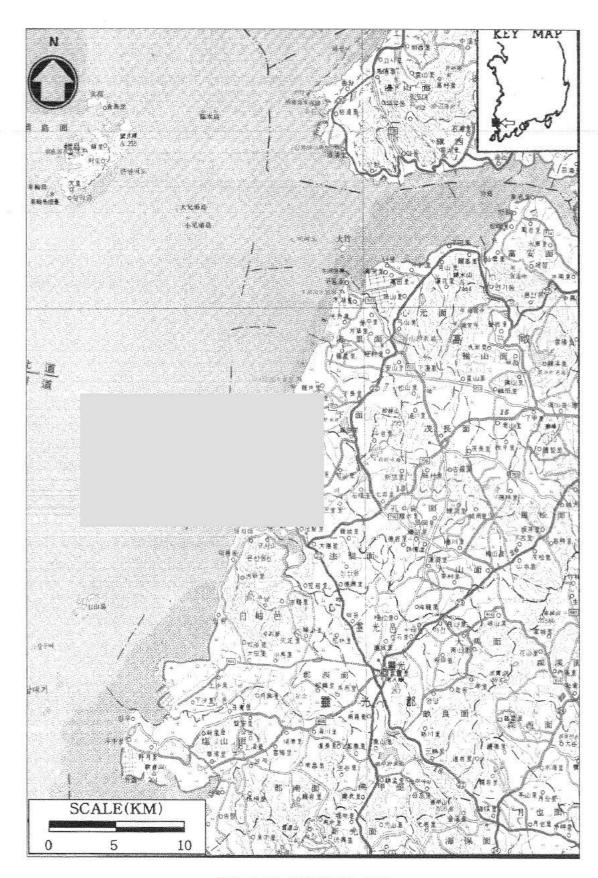


그림 1.4-1 사업지역의 위치

1 - 5 본 문서는 한국수력원자력(주)이 정보 공개용으로 작성한 문서입니다.

1.4.3 사업시행자

o 한국전력공사

1.4.4 발전소 제원

o 원자로형: 가압경수로형

• 발전방식: 기저부하 운전방식

o 사용연료 : 저농축 우라늄(U-235 성분 약3%)

o 발전출력 : 1,000MW × 2기

o 연간 발전가능량 : 가동율을 80%로 볼 때 약 140억 KWh

1.4.5 예비율

o 1998년부터 2015년까지의 전력설비 시설용량 및 최대전력수요와 이에 따른 예비율은 표 1.4-1과 같다.

표 1.4-1 전력설비 시설용량 및 예비율 전망

	최대수요		설비		
연 도	(만kW)	闻 7	건 설	하게 용량	예비율 (%)
1998	3,524	30	326	4,256 (4,377)	20.8
1999	3,714	42	417	4,467 (4,753)	20.3
2000	3,950	-	235	4,807 (4,987)	21.7
2001	4,188	43	147	5,042 (5,092)	20.4
2002	4,476		408	5,350 (5,500)	19.5

자료: 산업자원부, 1998, 제4차 장기전력수급계획(1998~2015).

1.4.6 기존 원자력관계시설

o 영광원자력 1,2,3,4호기 : 상업운전중(표 1.4-2)

표 1.4-2 부지 내 기존 발전시설 현황

호 기 항 목	1,2호기 (운영중)	3,4호기 (운영중)		
발 전 방 식	기저부하 운전방식	좌 동		
사용연료의 종류	저농축 우라늄(약 3%)	좌 동		
연간연료 사용량	약 50 ton	좌 동		
발전기 출력	950 MW	1,000 MW		
이 용 율	80 %	좌 동		
11. OJ 그) 도	1호기 : 1986. 4.	3호기 : 1995 3.		
상 업 가 동	2호기: 1987. 4.	4호기 : 1996. 3.		

1.4.7 주요설비

- o 용량 1,000MW급 원자력 발전시설 2기 및 부속설비 건설
- o 울진원자력 3.4호기를 참조로 하여 개량된 설계개념 적용
- o 아래의 기술사항은 1개호기 기준

가. 원자로 용기

- 형식: 가압경수로형

- 수량 : 1대

- 체적 : 108.2 m²

- 재질 : 압력용기용 탄소합금 단조강(오스테나이트 스테인레스강 및 Ni-Cr-Fe합금으로 내 부피복)

- 설계 압력/온도 : 175.8 kg/c㎡/343.3℃

- 연료 : 저농축 우라늄(U-235 성분 약 3%)

- 냉각재, 감속재 및 반사체 : 경수

나. 노심구조 및 핵연료 집합체

- 노심 등가직경 : 3,124 mm

- 노심 체적 : 22.4 m³

- 연료 집합체수 : 177개(75,495 kg)

- 연료물질 : UO_2 소결펠렛

- 연료피복재 : Zircaloy - 4

- 연료봉 배열 : 16 × 16(집합체)

다. 증기발생기

- 형식 : 수직 U-tube형

- 수량 : 2대

- 크기

· 동외경 : 5.65 m(18.53 ft)(상부), 4.27 m(14 ft)(하부)

· 높이: 20.11 m(66 ft)

- U-tube 수 : 8,214개 (대당)

- 설계 압력/온도

• Shell Side : 89.3 kg/cm/301.7 $^{\circ}\mathrm{C}$

• Tube Side: 175.8 kg/cm²/343.3°C

라. 가압기

- 형식 : 2 phase 물/증기 가압기

- 수량 : 1대

- 전열기 용량: 1,800 kW

- 설계압력/온도 : 175.8 kg/cm²/371.1℃

마. 터빈

- 형식 : 직렬배열(Tandem-Compound), 6 Flow

- 출력: 1050 MWe

- 수량: 고압터빈 1대, 저압터빈 3대

- 주증기 정지밸브 입구 압력/온도 : 72.8 kg/c㎡/287.1℃

- 회전수 : 1,800 RPM

바. 원자로냉각재 펌프

- 형식 : 직립 1단, 원심형

- 수량 : 4대

- 정격유량 : 323,264 L/min

- 정격 두 : 102.7 m

- 설계 압력/온도 : 175.8 kg/c㎡/343.3℃

- 전동기 전압 : 13,200 V

사. 복수기

- 형식 : 표면형(Surface Type), 수평형

- 냉각수 최대온도 : 입구 21.9℃, 출구 28.88℃

- 냉각 면적: 90,234 m'

- 튜브 재질 : 티타늄

- 공기추출기: Steam Jet Air Ejector

Condenser Vacuum Pump

Waterbox Primming Pump

아. 발전기

- 형식 : 전폐형, 횡축형, 삼상교류 발전기

- 용량 : 1,219.6 MVA

- 역률: 0.9

- 전압: 22kV

- 단락비 : 0.58

- 주파수 : 60 Hz

- 회전수 : 1,800 RPM

- 변류기 : 40,000/5 A, 중성선과 선로단자에 각각 상당 3개

- 냉각법 : 회전자 - 수소, 고정자 - 물

- 정격출력 : 1,050.8MW

자. 연료저장시설

- 옥내 수조형

- 용량 : 746개(사용후 핵연료 집합체)

차. 방사성폐기물처리계통

1) 기체 방사성폐기물 처리계통

본 계통의 처리 용량은 호기당 0.028m²/min

2) 액체 방사성폐기물 처리계통

본 계통의 처리용량은 원심분리기 및 선택성 이온교환기의 처리용량 면에서 호기 당 0.227m²/min

3) 고체 방사성폐기물 처리계통

본 계통은 호기 당 연간 약 84.41㎡의 고체 폐기물을 처리할 수 있는 설비와 약 498.4㎡의 압축가능 폐기물을 처리할 수 있는 설비가 갖추어져 있다.

카. 송전선 및 변압설비

- 송전설비 : 2루트, 2회선의 송전선로가 한전의 송전망에 연결, 345kV 영원 #1, #2 선로(영광~신김제) 광~신남원) 및 영광 #1, #2 선로(영광~신김제)
- 변전설비: 345 kV, 가스절연모선 연결방식
- 공사용 동력선 : 한전 전력 망으로부터 22.9kV의 별도 동력선을 설치하여 사용

타. 기타 구조물 및 설비

- 울진 3,4호기 설계를 참조하여 부지특성을 고려한 설계개선 적용

1.4.8 건설내용

가. 공사방법 및 규모

1) 토지 조성

본 영광원자력 5,6호기용 건설부지는 1,2호기 건설시 기 확보한 영광원전 부지 내에 위치하며, 따라서 영광 5,6호기의 건설에 따른 토지이용계획의 변화는 없다. 또한 본 발전소 부지지역은 도시계획상 공업지역으로 지정되어 있으므로 용도지역 변경이 필요하지 않다.

영광원자력 5,6호기를 포함한 개략적인 배치계획 도면은 그림 1.4-2에 나타냈으며 부지확보 현황은 다음과 같다.

- 부지정지 면적 : 516,750 m² (1,590, × 325m)
- 영광원자력 1,2호기 건설 시 부지정지 완료
- 영광 1~4호기 주설비 부지 : 347,750 m² (1,070m × 325m)
- 영광원자력 5,6호기 사용 부지 : 약 184,764 m² (520m × 325m)
- ○부지 정지고: EL. (+)10.0 m

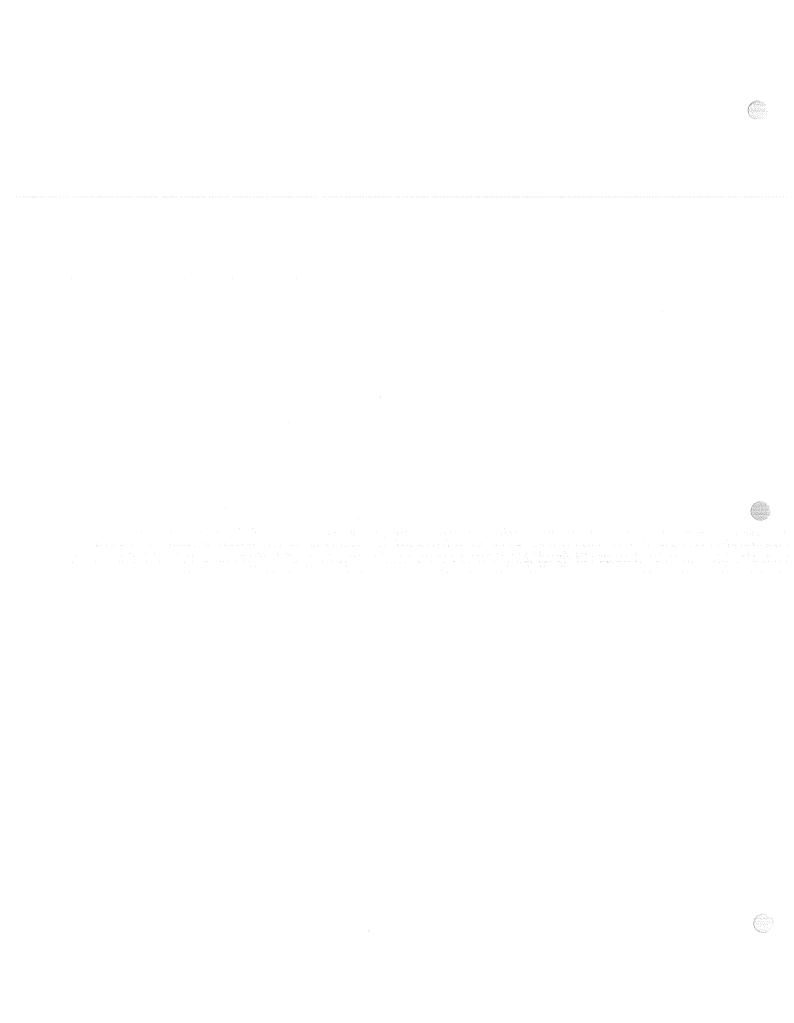


그림 1.4-2 주요시설물 배치도

2) 도로조성

기존 부지에 건설함에 따라 진입도로 및 부지 내 도로가 이미 조성되어 있으므로 별도의 도로조성 공사는 하지 않는다.

3) 항만시설

발전소 건설 및 운영을 위한 항만시설인 호안방파제, 물양장 및 접안설비 등은 영광 1,2호기 건설 시 이미 완공된 상태이다. 이들 항만시설 중 호안방파제는 북쪽 318m, 남쪽 318m가 각각 건설되어 있고, 2,000 D/W급 선박이 접안할 수 있는 물양장 및 접안시설이 도수로 내에 갖추었다.

4) 굴착

발전소 기초굴착 공사는 불도저 등 대형 토목중장비를 사용하여 실시한다. 따라서 발전소 본관위치의 원자로 격납용기 건물, 보조건물, 터빈건물, 기타 건축물을 축조하기 위한 기초 굴착공사를 실시하게 되는데 이때 발생하는 굴착량은 약 2,600,000 ㎡이다.

5) 사토

발전소 주요구조물 기초굴착공사 및 부대공사 시 발생되는 사토는 영광 5,6호기 환경 친화정비 사업 및 조경용으로 사용할 계획이다.

6) 벌채

기 부지조성 · 건설 상태로서 별도의 수목벌채는 없다.

7) 자재운반

8) 골재채취

발전소 내 각종 구조물 건설 시 필요한 재료원으로는 콘크리트용 조골재 약 410,000 ㎡, 세골재 약 347,000 ㎡과 기타 잡석 약간이 필요할 것으로 추정되며, 이중 조골재는 영광원자력 5,6호기 본관 기초굴착 공사 시 발생하는 암석을 파쇄하여 전량 공급하고 잡석인 피복석, 사석 등은 필요량이 소량으로 발전소 부지내의 소규모 석산을 개발하여 사용하였다. 그리고

세골재는 부지반경 150km 이내의 세골재 채취가능 지역에 대해 시굴 및 시료시험을 실시하여 전북 고창군과 전남 무안군 일대 4곳을 선정, 골재채취법에 따라 그 곳의 골재채취허가를 취득한 골재채취사업자로부터 골재를 구매하여 사용하였다.

9) 용수의 취수

영광원자력발전소에서는 1,2호기 건설 시 후속 원전 4기 증설을 고려하여 1,000MW급 가 압경수형(PWR) 원자력발전소 6기 용량의 공업용수 및 생활용수의 공급을 위한 용수원을 건설하였다. 용수원댐의 위치는 전북 고창군 아산면 용계리의 인천강 지류(아산저수지)이며 용수수요량은 약 15,000m²/day로 하여 취수댐, 원수관로 및 원수조 등을 건설하였다. 따라서 본 영광 5,6호기의 건설 및 발전용수는 아산댐으로부터 취수하였다.

10) 소음 및 진동의 발생원인 기기의 종류 및 용량

공사 중에 소음 및 진동의 주요 발생원이 되는 기기의 종류 및 규격은 표 1.4-3과 같다.

기기의 종류 开 격 불도저 (Bulldozer) 16 ~ 44 ton 백 호 (Backhoe) $0.7 \sim 30 \, \text{m}^3$ 압축기 (Compressor) $372 \sim 1,500$ CFM 트랙터 쇼벨 (Tractor Shovel) $4.7 \sim 7.7$ m³ 덤프트럭 (Dump Truck) $11 \sim 45$ 타워 크레인 $20 \sim 200$ ton

표 1.4-3 공사 중 소음 및 진동 발생기기의 종류 및 규격

나. 건설기간

- o 영광원자력 5호기 : 1996. 9 ~ 2002. 4 (67개월)
- 영광원자력 6호기 : 1996. 9 ~ 2002. 12 (75개월)

단, 착공은 본관 기초굴착 기준이며, 착공 및 준공시점은 장기전력수급계획에 의거 변경이 있을 경우 재조정할 수 있음.

다. 건설비용

o 총 공사비 : 4조 2,169 억원(경상가, 원자력연료비 불 포함)

- 내자 : 3조 6,697억원

- 외자 : 4억 9천만 달러

라. 건설인력

총 연 인원 약 1,000 만명

마. 예상가동수명

약 40년

1.5 당해부지 선정이유

건설중인 영광원자력 5,6호기의 부지는 다음과 같은 이유로 선정되었다.

- o 영광원자력발전소 부지는 1,2호기 부지매입 시 6개 호기용 부지로 매입하였고, 대체적으로 부지정지공사가 거의 완료되어 있다.
- o 장기전력수급계획 측면에서 볼 때 2002년과 2003년에 공급할 전력수요계획에 차질 없이 원자력발전소의 건설을 추진할 수 있다.
- o 영광부지는 임해에 위치하고 있어 해수를 원자력발전소의 냉각수로 이용하기가 용이하다.

2. 환경의 현황

2.1 부지의 현황

2.1 부지의 현황

2.1.1 부지의 위치

영광원자력 5,6호기의 건설부지(이하 부지)는 기존의 영광 1,2,3,4호기가 가동증인 한반도 남서부의 전라남도 영광군 홍농읍 계마리이다.

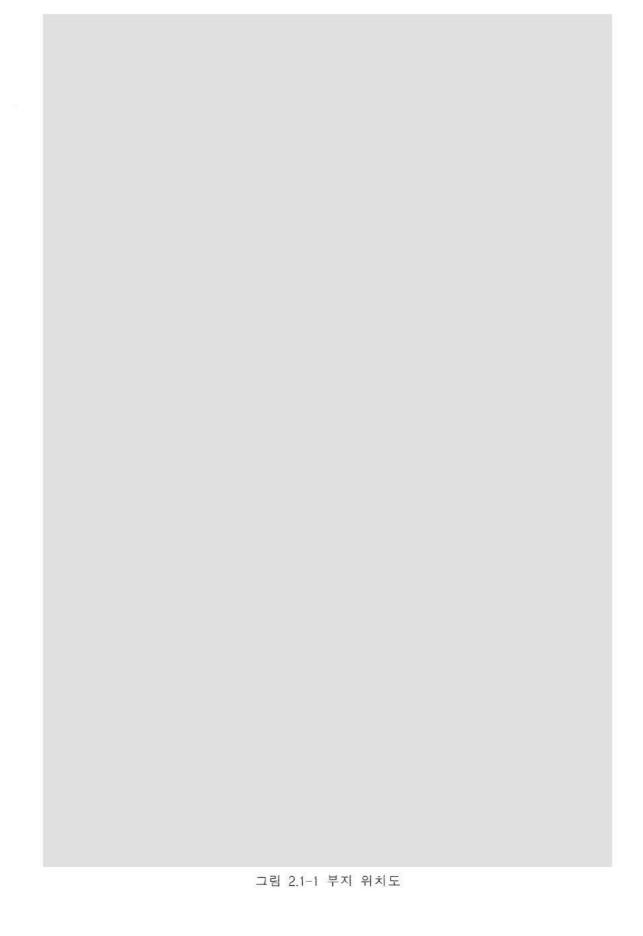

부지로부터 반경 16km이내에는 특기할 만한 지형지 물은 존재하지 않으며, 부지주변의 주요 지형물 현황은 표 2.1-1에 나타낸 바와 같다.

표 2.1-1 부지 반경 16km 이내의 자연지형물과 인공구조물

1	지 형 물		터의 위치	w) -	
시 경 팔		거리(km) 방위		비 고	
	장수천			길이 2.6 km	
	구암천			길이 8.5 km	
	와탄천			길이 22.3 km	
	영광천			길이 4.4 km	
	학산천			길이 5.1 km	
al of	대산천			길이 15 km	
자연	해리천			길이 11 km	
지형물	금정산			班卫 263.6 m	
	인의산			표고 157 m	
	대덕산			표고 240.3 m	
	왕제산			표고 151.1 m	
	망대산			班고 91.1 m	
	비학산			표고 307.4 m	
	계마항				
	고리포				
	구시포			=	
인공	법성포				
구조물	성산저수지			면적 86 ha	
	용대저수지			면적 180 ha	
	칠암저수지			면적 60 ha	
	두암저수지			면적 100 ha	

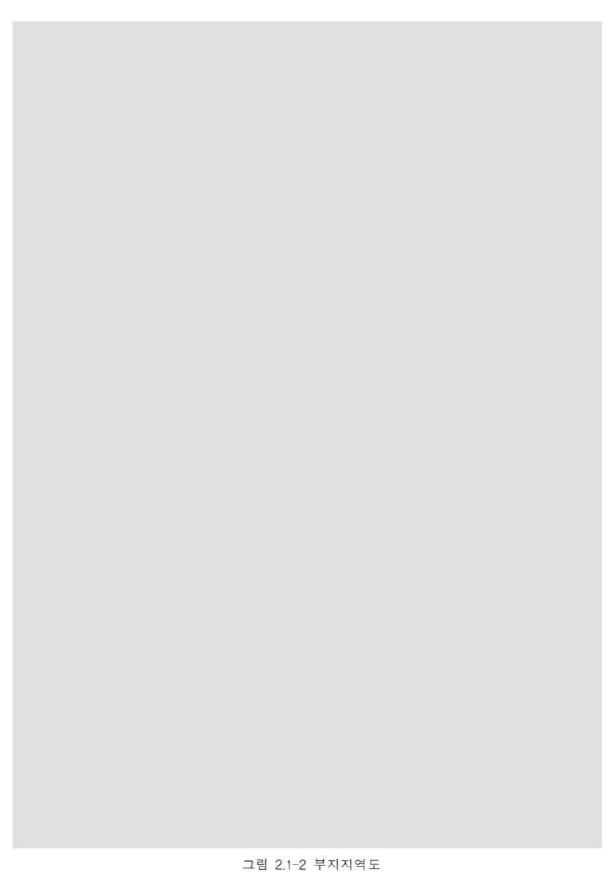
자료: 영광군·고창군청 도시과, 1998.

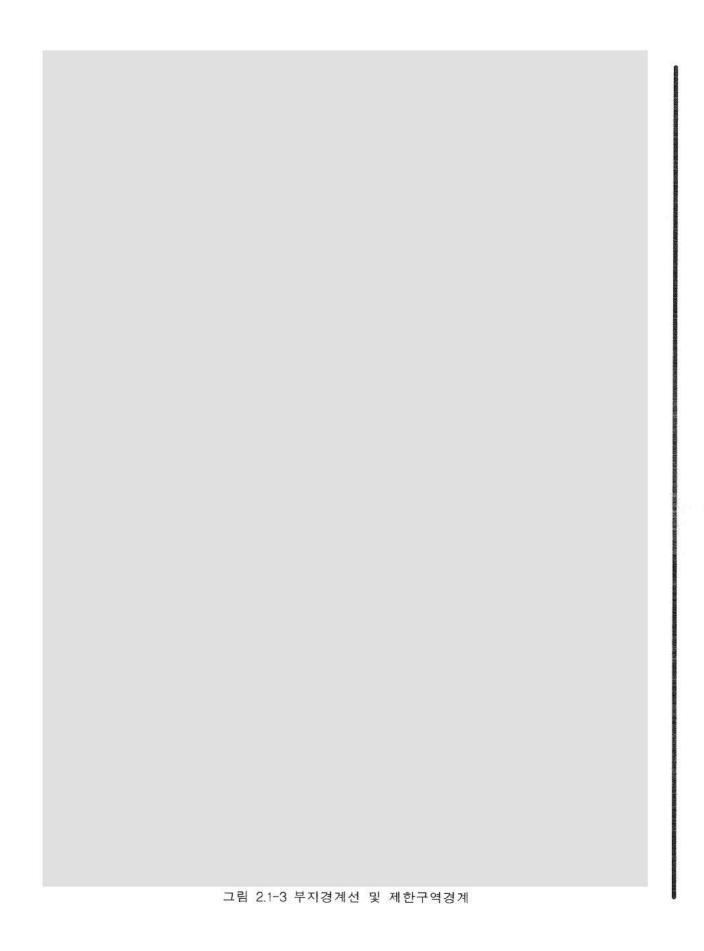
본 부지지역은 침강해안에 위치하고 있으며 간조 저지대에 산재해 있는 산악지형으로 구성되어 있다. 일반적으로 부지지역 중앙부분은 북쪽의 낮은 언덕과 간석지(tidal flat)로부터

제 2차 하구(secondary estuary)에 의해 분리되며, 남쪽의 산간지역으로부터는 하구에 의하여 분리된다. 부지지역의 서쪽은 낮은 언덕과 간조저지이며 멀리로는 황해 내에 일련의 작은 연안섬이 존재한다. 남쪽의 산들은 부지지역의 남부에 위치한 높은 기복을 가진 광범위한 지역의 연장부에 해당된다. 부지반경 10km내의 고도는 법성포 하구의 남쪽에서 최대 309,2m에 달한다.

법성포 하구는 이 지역에서 가장 큰 하구이며 부지반경 10km 밖 남동쪽으로 연장되어 있다. 입구 부근의 양상은 폭이 1km를 약간 초과하며 부지지역의 남동쪽 가장자리에서는 대략 100m 정도로 협소해진다. 법성포 마을은 하구의 북쪽제방 기슭에 위치하고 있으며 어항이다.

발전소 부지 북쪽으로 전라남북도 경계선상에 작은 만이 위치하며 그 상류 쪽으로 용대저수지가 위치하고 있다. 북쪽 구릉지역은 고도 60~70m의 완만하며 분포암석은 선캠브리아기 편암과 편마암, 화강질 관입암이 주를 이루며 붉고 갈색을 띤 토양이 발달되어 있다. 또한 이 지역의 해안선은 일직선상으로 발달해 있으며 간석지가 넓게 분포한다.


한편, 부지 동쪽지역은 반경 4~8km에 걸쳐서 환상으로 나타나며 이 지역은 선캠브리아 기 편암, 편마암, 화강암으로 구성된 완만한 구릉으로 형성되어 있으며 군데군데 저지대가 내재해 있다. 이들 구릉의 고도는 최대 140m에 달하나 평균 50m 이하이다. 선캠브리아기지층 위에 발달된 토양은 적갈색으로 나타난다. 저지대는 평행하고 배수상태가 불량하며 농업용으로 광범위하게 발달되어 있다.


부지주변에 발달된 주요 하천으로는 와탄천, 구암천이 부지 남동부에 위치하고 있으며 이들 하천은 법성포 하구근처에서 합류하여 서해로 유입된다. 반경 10km이내 전체적인 지형기복양상은 이격된 대덕산이 비교적 높은 241.5m의 산악지형을 형성하고 있으며 북쪽으로 갈수록 낮아져 전라북도 고창군 일대에서는 구릉 및 저지대를 형성한다. 따라서 본 부지는 금정산(표고 263.6m)과 부지 북쪽 구릉(표고 80.7m)사이의 하해혼성평탄지대에 위치하며 서쪽으로는 서해와 직접 접하고 있다(그림 2.1-2).

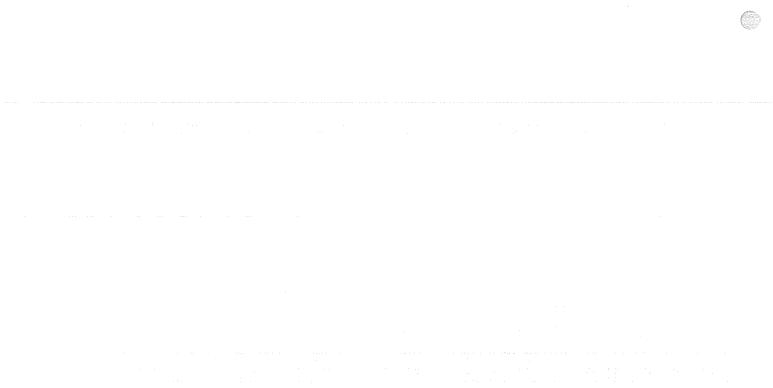
2.1.2 부지구역

영광군 홍농읍 계마리에 위치하는 발전소 부지는 서쪽으로 황해, 동쪽으로 홍농읍 진덕리와 상하리, 남쪽으로 홍농읍 칠곡리, 북쪽으로 성산리 마을로 둘러싸인 계마리 마을 서쪽 해변가에 위치하고 있다(그림 2.1-3).

발전소 부지지역의 이중 0.169km가 영광원자력 5,6호기 건설부지로 사용된다. 발전소 부지경계선은 그림 2.1-3에 나타내었듯이 부지의 제한구역경계선(560m)을 포함한다. 영광원자력 5,6호기 주요 시설물에 대한 개략위치는 그림 2.1-4에 제시하였다.

주요 시설물의 종류는 격납건물, 핵연료건물, 터빈건물, 보조건물, 취수구 등이다(표 2.1-2). 그리고 영광원자력 5,6호기의 각 건축구조물별 점유면적은 표 2.1-3에 제시하였듯이 총 46,231.84㎡이고 연 면적은 161,078.1㎡에 달한다.

부지 전용지역(제한구역)은 미국의 10 CFR 100의 규정에서 제시한 바와 같이 주민방사선 피폭선량을 고려하여 결정되었으며, 각 원자로 중심으로부터 560m이내의 지역으로 부지경계 안에 포함된다.


부지경계 구역 내에는 공장 및 상업용 구조물, 공공시설물, 휴양지, 주택 등은 없으며 고속도로, 수로, 철로 또한 통과하지 않는다. 황해는 부지의 서편에 접하며 제한구역의 바다부분을 차지하고 있다. 주요 접근로로 가 개설되어 있으며, 이들 도로와 연계된 도로를 이용하여 부지는 동쪽에 이르며, 통해 남쪽으로부터 부지로의 접근이 가능하다.

작은 어항인 법성포는 부지로부터 ' 떨어져 있다.

그림 2.1-4 영광 5,6호기 주요시설물 배치도 2 - 15

표 2.1-3 영광 5,6호기 건물별 건축면적

번호	건 물 명		건 물	개 요			w) =
E A	신 골 궁	건축면적(m')	연면적(m')	지하면적(m')	충	수	비고
A-1	출입통제 건물	1,302	5,241	1,335			
A-2	출입통제 건물	1,302	5,241	1,335			
B-1	비상 디젤발전 건물	1,059	2,304	520			
B-2	비상 디젤발전 건물	1,059	2,304	520			
C-1	원자로 격납건물	1,542	6,819	2,389			
C-2	원자로 격납건물	1,542	6,819	2,389			
D	물처리 건물	1,130	1,347	-			
E-1	1차 냉각해수 취수구조물	224	470	246			2000-
E-2	1차 냉각해수 취수구조물	224	470	246			
F-1	핵연료 건물	1,140	2,940				-
F-2	핵연료 건물	1,140	2,940	-			
H-1	기기냉각수 열교환기건물	739	1,478	739			*******
H-2	기기냉각수 열교환기건물	739	1,478	739			
J	개스 저장실	234	234	_			
K	기계공작 건물	1,550	2,432				
L	염소주입건물	606	606				-
M	다중 신장기 저장창고	168.5	168.5	-			
N	스위치야드 제어건물	458.24	916.48	458.24			10000
P-1	1차 보조건물	3,926	25,858	8,420			
P-2	1차 보조건물	3,926	25,858	8,420			
R	폐기물 처리 건물	2,317	10,042	3,995			
S-1	2차 보조건물	1,775	6,502	3,550			
S-2	2차 보조건물	1,775	6,502	3,550			
T-1	터빈 건물	5,889	18,326	5,889			Marketon
T-2	터빈 건물	5,889	18,326	5,889			-
W-1	순환수 취수실 및 펌프장	1,210	1,650				-
W-2	순환수 취수실 및 펌프장	1,210	1,650	-			
Y	영구 창고	2,156.1	2,156.1	-			
	합 계	46,231.84	161,078.1	50,629.24			

2.2 토지 이용

2.2 토지이용

2.2.1 토지이용 현황

가. 현재의 토지이용

발전소 부지반경 10km이내의 지역은 영광군 홍농읍, 백수읍, 법성면 및 고창군 상하면, 공음면, 해리면을 포함하며 이 지역 일대의 토지이용 현황을 지목별 분포비율로 구분하면 임야 39.1%, 논 24.4%, 밭 19.3%, 도로 및 하천 4.7%, 대지 2.7%, 공장용지 2.2% 순으로 분포하며 기타 과수원, 목장용지, 염전 등이 7.6%를 점유한다(표 2.2-1). 전반적으로 농경지 점유비율이 높은 편이며 부지남쪽에 위치한 금정산(263.6m)을 제외한 전지역이 구릉성 야산으로 그 사이의 곡간지와 구암천 등 소하천 및 해안 평탄지 주변에 농경지가 많이 분포되어 있다. 이러한 토지이용 특성은 비교적 낮은 구릉성 야산과 서해와 접한 평탄지가 발달된 지역에 위치한 지형적 영향에 기인한다.

영광군과 고창군의 1997년 현재 토지종별 현황을 영광원자력 5,6호기 건설사업 환경영향평가서 1996년 자료와 비교해 볼 때 대지, 공장용지, 도로 등은 증가된 반면 임야와 논은 감소되는 경향을 나타낸다. 특히 대지, 공장용지, 도로, 목장용지는 지속적인 증가추세를 나타내고 있는데, 이는 기존의 야산 임지 및 농경지를 개발하여 토지이용 효율이 높은 대지, 공장용지, 도로, 목장용지 등으로 전환하였기 때문이다(그림 2.2-1).

표 2.2-1 부지인근지역의 토지이용 현황 (단위 : ha)

읍·면별	계	밭	논	임야	대지	도로	하천	공장용지	기타
영광군	3,766.6	598	801.3	1,643	101	99.6	73.3	233.7	216.7
홍농읍	(+53.6)	(-29)	(-27.7)	(-14)	(+7)	(+27.6)	(+16.3)	(+35.7)	(+37.7)
영광군	3,403.8	843.6	917.7	1,164.3	105	113.4	81.6	0.5	177.7
법성면	(-47.2)	(-27.4)	(-23.3)	(-76.7)	(+2)	(+28.4)	(+20.6)	(+0.5)	(+28.7)
고창군	3,286.2	574.6	832.7	1,276.8	75.6	100.4	19.9	0.8	405.4
상하면	(+20.2)	(-32.4)	(+14.7)	(-74.2)	(+5.6)	(+16.4)	(-2.1)	(+0.8)	(+91.4)
합계	10,456.6	2,016.2	2,551.7	4,084.1	281.6	313.4	174.8	235	799.8
JI /II	(+26.6)	(-88.8)	(-36.3)	(-164.9)	(+14.6)	(+72.4)	(+34.8)	(+37)	(+157.8)
구성비 (%)	100	19.3	24.4	39.1	2.7	3	1.7	2.2	7.6

자료: 영광군・고창군 통계연보, 1998.

주 : 기타는 과수원, 목장용지, 학교용지, 제방, 철도용지, 유지, 종교용지, 사적지, 묘지, 잡종지 포함.

: ()는 영광 5,6호기 건설사업 환경영향평가서(1996)와의 비교 증감치임.

한편 발전소가 위치하는 영광군 홍농읍의 총면적은 1992년 보다 53.6ha가 증가한 3,766.6ha로서 대지, 도로, 하천, 공장용지 등이 각각 7ha, 27.6ha, 16.3ha, 35.7ha 정도 확장되었다. 반면 논은 27.7ha, 밭은 29ha, 임야는 14ha 감소하였다. 토지이용별 분포비는 밭 15.9%, 논 21.3%, 임야 43.6%, 대지 2.7%, 도로 및 하천 4.6%, 공장용지 6.2%, 기타 5.8%로서 임야가 대부분을 점유하고 있다.

나, 토지이용 계획

1) 국토이용계획

국토이용관리법은 법률 제 5907호(99. 2. 8 개정) 및 대통령령 제 16179호에 의거 1997년 11월 23일부로 시행되었다. 그 내용에서 국토이용관리법에 의한 용도지역구분을 표 2.2-2에 나타내었다.

표 2.2-2 국토이용관리법에 의한 용도지역구분

구 분	영광 5,6호기 환경영향평가서의 구분
도 시 지 역	도시지역, 공업지역
준도 시지역	취락지역, 관광휴양지역, 개발촉진지역(개간촉진지구 제외)
준 농 림 지 역	경지지역(비농업진흥지역), 산림보전지역(준 보전임지), 개발촉진지역(개간촉진지구)
농림지역	경지지역(농업진흥지역), 산림보전지역(보전임지)
자연환경보전지역	자연환경보전지역, 수자원보전지역

주 : 영광 5.6 호기 환경영향평가서(1996)에서의 유보지역은 폐지됨

표 2.2-3에서는 개정된 국토이용관리법에 따른 국토이용계획과 영광원자력 5,6호기 환경 영향평가서 자료와의 비교를 위해 당시의 10개 지역구분을 현재의 5개 지역구분으로 분류하였다. 부지인근지역인 홍농읍, 법성면은 1993년 자료와 비교해 볼 때 전반적으로 농림·준농림지역이 2.406km 증가하고, 도시지역이 2.314km, 준도시지역이 0.063km 감소한 양상을 보이고 있다. 각 용도지역별 국토이용계획 면적의 변화추이는 표 2.2-3에 상세히 나타내었다. 영광원자력발전소 부지인 홍농읍 계마리를 포함하여 성산리, 칠곡리와 법성면 법성리, 진내리일대는 도시지역으로 지정되어 있으며 구암천, 용대저수지 주변 및 고창군 상하면 용정리, 석남리 일대는 경지지역으로 지정되어 있다. 그리고 고창군 상하면 하장리, 영광군 홍농읍신석리, 법성면 화천리, 용성리, 월산리, 백수읍 구수리 일대의 야산 중 향후 개발가능 지역은 준농림지역으로 지정되었고 기타 산지는 농림지역으로 지정되어 있다.

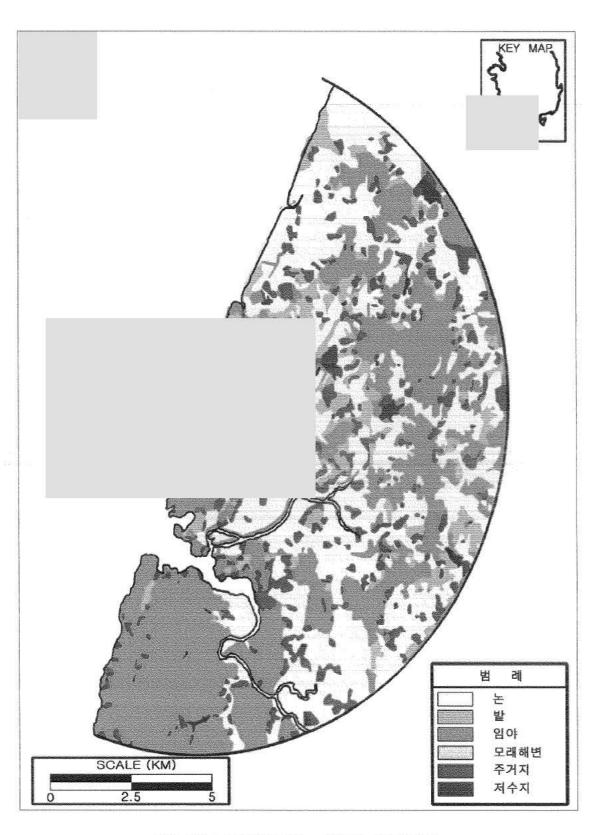


그림 2.2-1 부지반경 10km 이내의 토지이용도

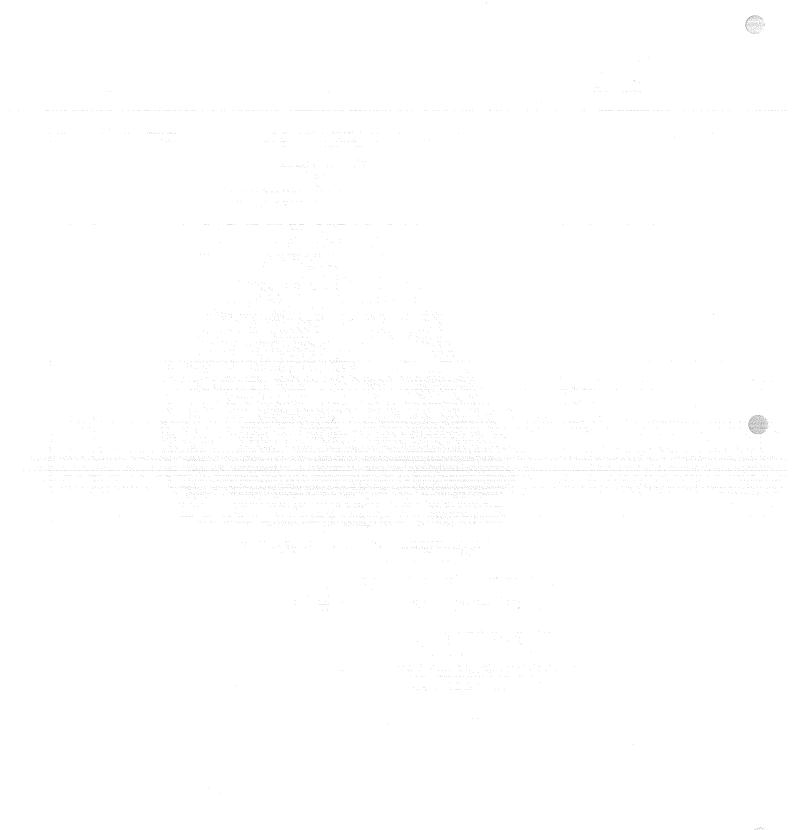


표 2.2-3 용도지역별 국토이용계획 (단위 : ㎞)

	······································						기서치거
구	분	계	도시지역	준도시지역	농림지역	준농림지역	자연환경
-							보전지역
	1998 1)	37.664	15.886	0.142	12.549	9.087	vener
홍농읍	1993 ²⁾	37.083	18.200	0.142	18	.741	water.
	1) - 2)	+0.581	-2.314	0	+2	.895	
	1998 1)	34.038	3.642	0.429	13.743	16.224	AATTIN
법성면	1993 ²⁾	34.59	3.642	0.492	30.456		was.
	1) - 2)	-0.552	0	-0.063	-0.489		
	1998 1)	71.702	19.528	0.571	26.292	25.311	
계	1993 ²⁾	71.673	21.842	0.634	49	.197	option .
	1) - 2)	+0.029	-2.314	-0.063	+2	.406	
상하면	1998	32.861	www	0.152	10.160	22.549	19760
공음면	1998	50.068	1.873		18.043	30.152	_
계		82.929	1.873	0.152	28.203	52.701	Amas

자료: 전라남도 도청 지역계획과, 고창군청 도시과 국토이용계획결정조서, 1999.

2) 도시계획

1998년 말 현재 영광군과 고창군의 도시계획면적은 각각 42.79km, 31.77km이며, 영광원자력 5,6호기 건설사업 환경영향평가서(1996)의 1992년 자료와 비교해 볼 때 영광군 전체의 도시계획면적은 1992년 당시의 도시계획면적과 동일하며, 고창군의 경우 주거지역과 생산녹지지역의 증감으로 인하여 이 또한 거의 변화가 없다(표 2.2-4).

한편 본 사업부지가 포함된 홍농읍 소재지 일대가 도시계획지역으로 지정되어 있다. 홍농읍의 도시계획 면적은 18.20km'이며 이를 용도지역별로 구분하면 주거지역 1.20km', 상업지역 0.06km', 공업지역 3.50km', 자연녹지지역 13.44km'이다. 현 도시계획구역은 본 발전소 부지 동쪽성산리, 동남쪽 신설리 및 상하리, 남쪽 칠곡리 일대가 해당되며 타 지역에 비해 인구밀도가높은 편이다. 한편 홍농읍 도시계획에 의하면 원자력발전소 주변지역을 공업지역으로 지정,보전할 계획이며, 홍농읍 소재지 주변에 주거지역, 상업지역, 공업지역을 현 토지이용 상황을 고려하여 균형 있게 배치할 예정이다.

표 2.2-4 부지인근지역의 도시계획 현황 (단위 : ㎞, 명)

7	분/해당군・읍・면	영광군 전체	홍농읍	법성면	고창군 전체	공음면
	계획인구	67,200		7,000	47,450	3,000
	세탁인구	(-19,640)	(0)	(0)	(+1,450)	3,000
	계획면적	42.79	18.20	3.64	31.77	1.87
	세탁번색	(0)	(0)	(0)	(-0.01)	1.07
	スココロ	4.3	1.20	0.63	4.78	0.27
	주거지역	(+0.07)	(0)	(+0.07)	(+0.19)	0.27
	17 VJ = 1 VJ	0.64	0.06	0.09	0.48	0.02
	상업지역	(+0.01)	(0)	(+0.01)	(0)	0.02
	고하기어	3.91	3.50	0.04	0.56	0.04
용	공업지역	(0)	(0)	(0)	(0)	0.04
도	기 서 누 기 기 어	30.71	13.44	2.44	23.46	154
지	자연녹지지역	(-0.08)	(0)	(-0.08)	(+0.1)	1.54
역	게 가 누 ㅋ ㅋ 저	2.71		0.44	2.49	
	생산녹지지역	(0)	****	(-0.1)	(-0.3)	ummir
un manager i man	ㅂ기누기기서	0.52				
	보전녹지지역	(0)		maa.	de la constant de la	
	미지정 지역			***************************************		union.

자료: 영광군・고창군 통계연보, 1998.

주 : ()는 영광 5,6호기 건설사업 환경영향평가서(1996)와의 비교 증감치임.

2.2.2 축산물의 생산

가. 부지 반경 80km이내의 가축 방목기간 및 사료유형

사업부지 반경 80km 이내의 지역은 우리나라 중남부에 해당하며 북쪽으로는 충남 서천 군, 남쪽으로는 전남 신안군과 경계하며 이들 지역에서 초지 조성은 낮은 야산을 개발하여 이용하고 있다. 그러나 초지 조성 규모가 작고 하절기에 고온 다습하여 전염병의 발생우려 때문에 축우의 방목은 성행하지 않는 실정이다. 그러므로 초지의 생산물은 청초로 베어 직접 사료로 급여하거나 건초 또는 담근먹이로 저장하였다가 동기에 조사료로 사용하고 있다. 성우 1두당 사료 소요량은 청초로는 1일 50~60kg 정도를 급여하고 부족한 영양분은 배합 사료로서 1일 6~7kg 정도를 보충 급여한다.

이 지역은 단위당 초지 규모가 작고 하절기에 고온 다습하여 전염병의 발생 우려 때문에 젖소의 방목은 거의 하지 않고 있으나 초지 및 산야초의 생장기간동안은 청초를 먹이는 기간이므로 방목기간으로 간주할 수 있다. 이 지역(중남부지역에 해당됨)의 방목기간은 표 2.2-5에 제시된 바와 같이 약 6개월 정도가 된다. 즉 4월 15일~10월 20일까지의 기간이다.

사료유형은 목초, 산야초, 담근먹이, 볏집 등이 주가 되며, 보조재는 배합사료이다. 이들 사료의 특성은 다음과 같으나 산야초의 경우 농촌 일손의 부족으로 전과 같이 많이 생산되지 않고 있다.

ㅇ 목 초

본 지역에서 재배되는 목초의 종류는 오차드 그라스(Orchard grass), 톨페스큐(Toll fescue), 퍼레니얼 라이그라스(Perenial ryegrass) 등을 주종으로 6~7종을 혼합파종하고 있으며 표 2.2-6에 재배목초의 종류 및 특성을 나타내었다.

표 2.2-5 지역별 방목기간

지역	첫 방목시기	최종 방목시기	이용기간
북부	5월 상순	10월 상순	150일
중부	4월 상순	10월 중순	170일
남부	4월 상순	10월 하순	190일
제주	4월 상순	10월 상순	210일

자료: 낙농기술, 1985. 축협중앙회 낙농사업단 조사료팀, 1999.

혼합파종은 상번초와 하번초가 어울려 공간을 입체적으로 활용할 수 있으며 또한 각종 영양분을 고루 섭취할 수 있고 양질의 건초를 만들 수 있어 널리 활용되고 있다. 본 지역의 목초 예취 빈도는 연 4회 정도이며, 1회당 예취량은 평균 1,200kg/ha(청초중량)이다.

한편, 목초는 여름에 기온이 높아지면서 생육이 정지되거나 목초가 죽는 하고(何故)현상이 나타나므로 이 시기에는 산야초 및 잡초를 재초하여 사료로 사용한다.

o 산야초

산야초는 단위생산량에 있어서 목초 생산량의 1/3도 못 미치며 영양가도 낮으나 본 지역에서 자연히 자라고 있으므로 필요할 때 베어 먹이는 사료로서 축우를 사육하는데 없어서는 안되는 사료이다. 가축이 잘 먹는 산야초의 종류는 새, 참억새, 수크령, 큰기름새, 실새풀, 바랭이, 띄나리새, 돌콩, 산갈퀴, 벌노랑이, 차풀 등이다.

표 2.2-6 재배목초의 종류 및 특성

목 초 명	이용연한	초 형	특 성
오차드 그라스	다년생	상번초	그늘에서도 흔히 잘자라서 과수원풀이 라고 불리움
톨페스큐	영년생	상번초	직근(直根)은 짧으며 굵은 줄기는 예취 나 방목에 잘 견디도록 되어 있음
티모시	영년생		서늘한 기후와 습한 지역에서 재배가 잘 되며 특히 추위에 강하기 때문에 높은 지대에서도 얼어죽지 않음
이탈리안 라이그라스			가늘고 연약하며 줄기옆에서 종자를 갖고 있으며 종자는 긴 까락을 가지고 있음
퍼레니얼 라이그라스	중간다년생	하번초	질이 연하여 가축의 기호성이 좋음
리드 카나리그라스	영년생		배수불량한 곳이나, 습지에서도 재배가 잘됨
레드톱	영년생		뿌리는 천근성으로, 5~15cm 정도 되는 강한 지하경이 있으며, 잔디와 같은 모 양임
켄터키 블루그라스	영년생	하번초	척박지에 잘 견딤
알팔파	영년생	하번초	붕소 결핍토양에서 생육부진
화이트 클로버	다년생	하번초	고온에 강함
레드 클로버	다년생		뿌리는 직근(直根)으로 되어 있으며, 지근을 많이 가지고 있으나 알팔파와 같은 토양 깊숙이 뻗지 않음

자료 : 축협중앙회, 1999. 낙농기술, 1985.

o 담근먹이

담근먹이는 옥수수, 수단그라스(수수), 연맥, 대맥, 호매, 이탈리안 라이그라스 등 혼합 목초로 제조한다. 담근먹이 제조시 작물별로 적기에 수확하여 적절한 수분 함량이 포함된 재료로 제조하여 영양손실이 적고 채식량이 많도록 유의한다. 담근먹이는 월동용으로 고초기간 동안 다즙사료의 급여방법으로 좋으며 연중 조사료를 수집 저장하고 겨울에 담근먹이로 급여한다.

o 볏 집

병집은 본 지역에서 풍부한 조사료이며 가을에 수확됨으로 축우의 월동용 조사료로 이용된다. 전국에서 연간 생산되는 양은 약 750만톤으로 추산되고 그중 15%가 사료로 이용되며 ha당 생산량은 약 6톤(축협중앙회 조사료팀, 1999)이다. 본 지역 생산량을 계산해 보면 답면적이 영광군 11,506ha, 고창군 14,459ha이므로 총 생산량은 155,790톤이 되고 그중 15%인 23,269톤이 축우의 조사료로 이용된다고 볼 수 있다. 병집의 영양성분 함량은 단백질이 4~5%, 조섬유와 조회분의 함량이 각각 29~32%, 12~25% 정도이다.

목건초의 단백질 함량이 15% 인데 비하면 단백질 영양소가 떨어지며 소화율도 낮은 것이 단점이다. 소화율을 높이기 위하여 목초와 혼합하여 급여하거나 또는 물리적, 화학적처리 및 효소처리를 하면 그 결점을 보완할 수 있으므로 전문 축산농가는 이를 활용하고 있다.

나. 10km이내의 가축

반경 10km 이내에서 사육되는 가축현황을 한우, 젖소, 돼지에 대하여 영광군 및 고창군의 축산자료를 이용하여 표 2.2-7와 그림 2.2-2~4에 나타내었다.

표 2.2-7 반경 10km이내 가축 사육현황 (단위: 마리)

위 치			사 육 두 수		
	71 ^1		한 우	젖 소	돼 지
		진덕리	216(+21)	-(-44)	10(-24)
		월암리	49(0)	Auto-	
		가곡리	123(+42)	_	33(-107)
		단덕리	106(-39)		
	~	신석리	154(+92)	-	3(-13)
	홍농읍	상하리	178(-40)	_	
		칠곡리	128(-14)	_	8,597(-3371)
		계마리	3(+1)		
	\$.	성산리	74(-14)	es ANO.	2(+2)
		소 계	1,031(+49)	_	8,643
		진내리	8(-29)		
	법성면	법성리	95(+54)	, choose	options:
영광군		화천리	102(-23)		Moo.
		대덕리	56(-23)	30(0)	
		덕흥리	471		21
		입암리	75		10
		월산리	110		2,000
		용성리	167(+85)		2,500(+2,500)
		용덕리	106(+26)	70(+12)	750(+742)
		삼당리	67(-28)	_	-(-8)
		소 계	1,257	100	5,281
		대신리	some	_	11(-103)
Solding control of the control of th		구수리		_	20(-6)
	백수읍	길용리			623
		소 계		-	654
	총계			100	14,578

자료 : 영광군청 농정과, 1999.

주 : ()는 영광 5,6호기 건설사업 환경영향평가서(1996) 현황자료와 비교 증감치임.

표 2.2-7 반경 10km이내 가축 사육현황(계속) (단위: 마리)

	위 치	***************************************		사육두수	
	7 1		한 우	젖 소	돼지
The state of the s		장산리	68(+47)	31(-14)	350(+350)
-		장호리	37(+14)	_	*******
		용정리	96(+28)	43(+43)	s.mon
-		자룡리	60(+41)	192(+17)	
	1) [1	석남리	103(+51)	31(-4)	605(+418)
	상하면	하장리	92(-10)	_	
		용대리	54	122	
			48(-19)		****
		송곡리	14		
고창군		소계	572	419	955
7.8.7		두암리	128(+20)	- Salara	
		구암리	71(-65)	71(+44)	-
- Control of the Cont	70-3	석교리	109(-5)		2(-28)
no contraction of the contractio	공음면	장곡리	11(-61)		man:
		칠암리	260	, manu	_
		소계	579	71	2
		왕촌리	143	39	-
	해리면		40(-5)		4(-18)
		소계	183	39	4
	총 계		1,334	529	961

자료 : 고창군 산림축산과, 1999.

주 : ()는 영광 5,6호기 건설사업 환경영향평가서(1996) 현황자료와 비교 증감치임.

10km이내의 한우사육두수는 1999년 6월 현재 3,622두이며 젖소 629두, 돼지 15,539두이다. 영광원자력 5,6호기 건설사업 환경영향평가서의 1995년 자료와 비교해 볼 때 한우와 젖소 그리고 돼지는 각각 1,043두, 215두, 2,503두씩 증가하였다. 한우는 어느 지역에 편중되어 사육되는 것이 아닌 전지역에서 고루 사육되고, 돼지는 홍농읍 칠곡리, 법성면 용성리에서 많이 사육하고 있다.

부지에서 가장 가까이 위치한 삼양사 농장은 남남동방향 약 3.2km 떨어진 영광군 홍농읍 칠곡리에 위치하며, 대부분 일반 농가에서는 분업을 겸한 유축농업의 형태로 소규모의 가축 사육이 이루어지고 있다.

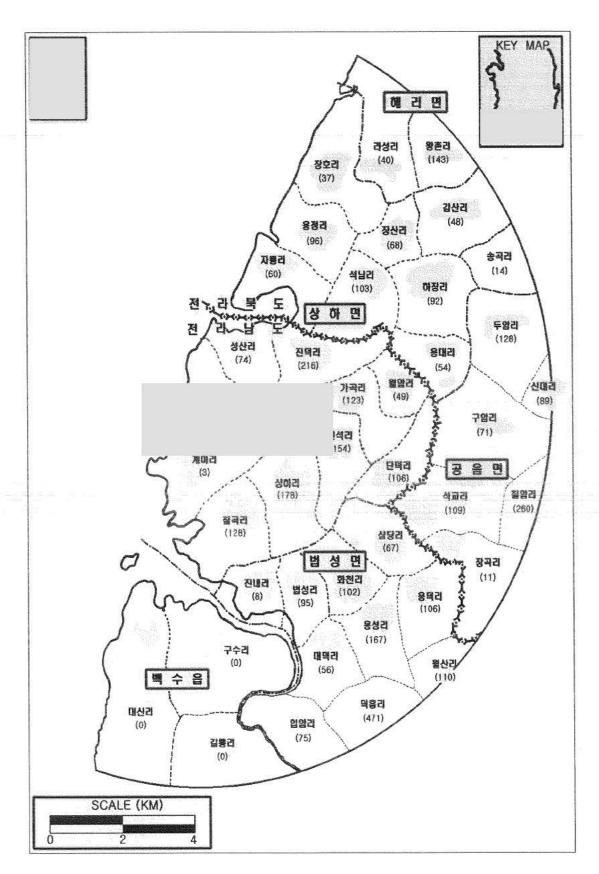


그림 2.2-2 반경 10km이내의 행정구역(리)별 한우 사육두수

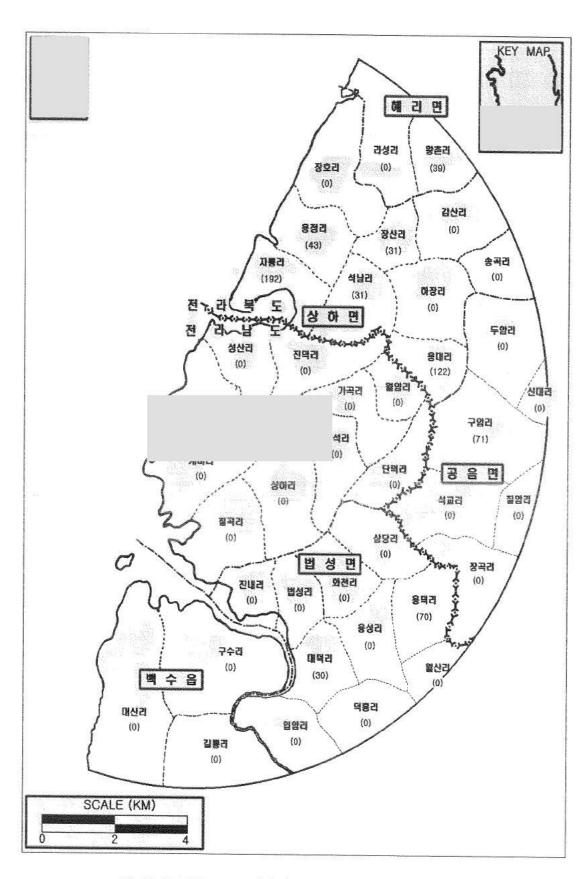


그림 2.2-3 반경 10km 이내의 행정구역(리)별 젖소 사육두수

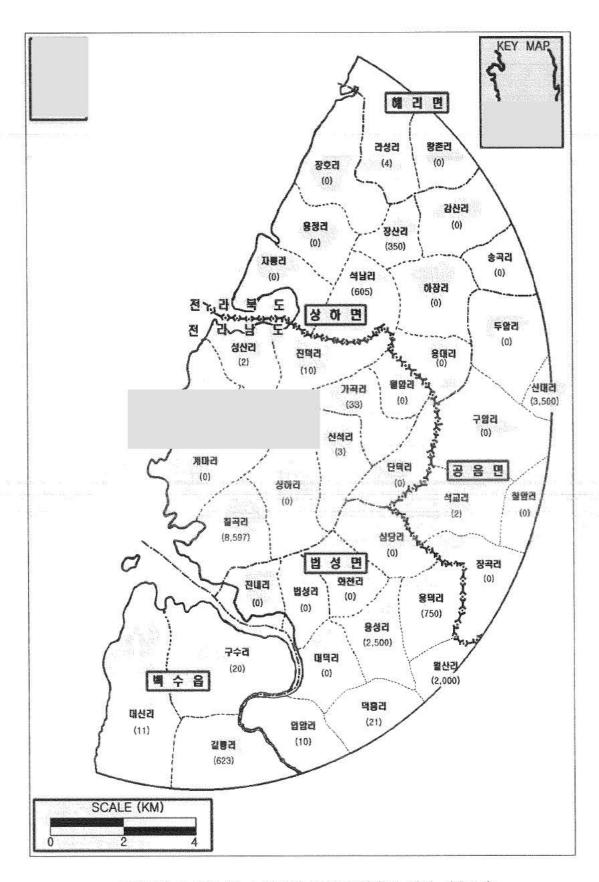


그림 2.2-4 반경 10km 이내의 행정구역(리)별 돼지 사육두수

다. 20km이내의 육류 및 우유생산량

1) 산출방법

육류	및	우유	생산량은	다음과	같은	방법으로	산출하였다.		

2) 생산량

상기한 산출방법으로 면단위 육류생산량과 우유생산량을 구한 후 2, 4, 6, 8, 10, 20km의 동심원을 16방위로 지형도상에 분할하고 각 구획내에 속하는 읍·면의 인구수를 기준으로 생산량을 산출하였다. 반경 20km내의 각 구획별 육류 및 우유생산량은 표 2.2-8~9와 그림 2.2-5~6에 나타낸 바와 같다.

ㅇ 육류생산량

반경 20km내 연간 총 생산량은 약 1,969.1톤이며, 농경지 및 낮은 구릉지가 많은 동 및 동 남동 방향에서 전체 생산량의 67.1% 인 1,321.29톤을 생산하고 있다.

ㅇ 우유생산량

반경 20km내 연간 총 우유생산량은 약 15,769kℓ 이며 낮은 구릉지에 초지가 많이 조성되어 있는 동, 동남동, 남동 및 남남동 방향에서 전체 생산량의 83.2% 인 13,125kℓ를 생산하고 있다.

표 2.2-8 부지반경 20km이내의 육류생산량 (단위 : MT)

		-	부지로부터의	의 거리(km)			
방 향	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	10 - 20	합계
N	70-0-0	wite	_			_	Loos
NNE	_	1.302	1.302	- Marie	3.162	29.212	34.978
NE	600		15.996	19.158	38.966	249.68	323.8
ENE	_		2.604	18.972	15.624	167.54	204.74
Е	_	-auen		18.892	30.855	661.28	711.03
ESE	A-405	, and a	Asser		51.425	558.84	610.26
SE		wasan			4.235	80.08	84.315
SSE			ener :				
S			——————————————————————————————————————				
SSW	anno.	-				- Marie	
SW		-					
WSW	_		mar	_	and the state of t		
W	, man						_
WNW				nam.	Some-	_	
NW	_					_	_
NNW			_				
합 계		1.302	19.902	57.022	144.27	1,746.6	1,969.1

표 2.2-9 부지반경 20km이내의 우유생산량 (단위 : kℓ)

			부지로부터.	의 거리(km)		
방 향	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	10 - 20	계
N	_	-	_		_	Million	
NNE	_	21.63	21.63		52.53	46.9	142.69
NE			265.74	318.27	143.51	424	1,151.5
ENE		_	43.26	315.18	259.56	590.23	1,208.2
Е				122.99	138.21	1,207.3	1,468.5
ESE				46.41	244.63	6,138.2	6,429.2
SE	-	_	21.42	124.95	128.45	3,403.6	3,678.4
SSE	_		73.78	waser .	141.61	1,333.5	1,548.9
S	***	and the second s		same	man-	141.55	141.55
SSW	-		Acces				No.
SW	_	_		_	- Aug	_	
WSW			_		- Lagrange		
W		_		_	-		
WNW			and the state of t				_
NW							
NNW	-	_	*****		augus.		artings
합계	_	21.63	425.83	927.8	1,108.5	13,285	15,769

	INTERVAL(KM)	0.0-2.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	10.0-20.0	TOTAL
-	MEAT. PROD. (M/T)		1.032	19.902	57.022	144.27	1,746.6	1,969.1

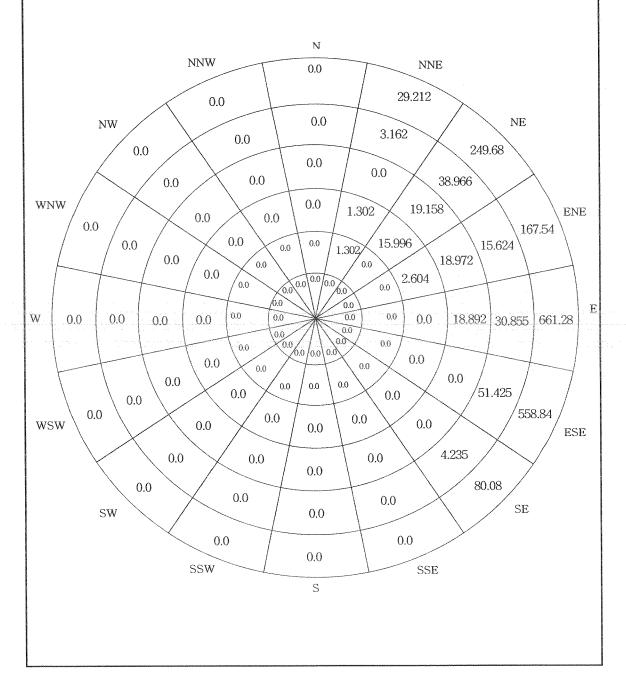


그림 2.2-5 반경 20km이내의 육류생산량

INTERVAL(KM)	0.0-2.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	10.0-20.0	TOTAL
MILK. PROD. (KL)		21.63	425.83	927.8	1,108.5	13,285	15,769

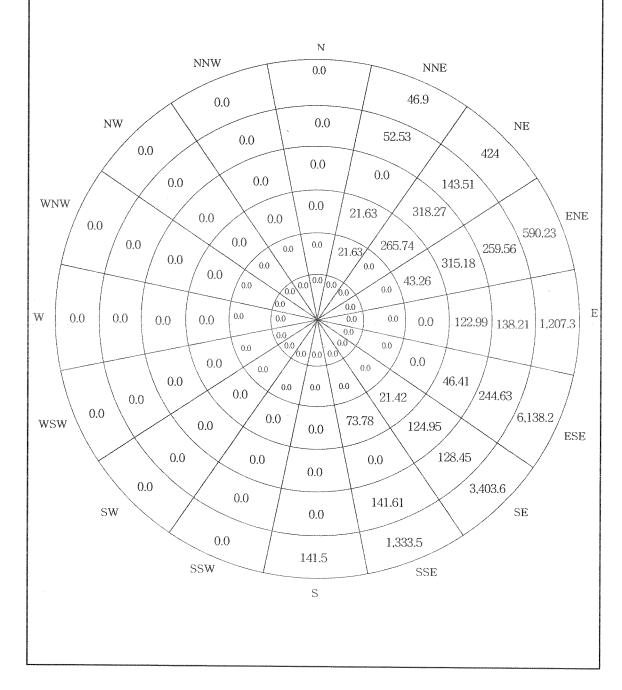


그림 2.2-6 반경 20km 이내의 우유생산량

라. 20~80km 사이의 육류 및 우유생산량

반경 20~80km 사이의 각 구획별 육류 및 우유생산량

은 부록표 2.2-1~2와 부록그림 2.2-1~2에 나타낸 바와 같다.

o 육류생산량

반경 20~80km 사이의 총 육류생산량은 연간 223,356.66톤이며 북동, 동남동 및 남동 방향에서 전체 생산량의 약 59.35%에 해당하는 132,536.7톤을 생산한다.

ㅇ 우유생산량

우유생산량은 연간 총 166,900.402kℓ이며 북동, 동북동 및 남남동 방향에서 58.2%인 970,95.7kℓ를 생산한다.

마, 축산 및 낙농지 면적

반경 80km이내 27개 시·군의 초지조성 현황은 표 2.2-10과 같으며 총 초지면적은 5,208.03ha이며 이들 중 정읍시, 남원시, 임실군, 고창군, 광주광역시, 영암군, 무안군 등의 초지 조성면적이 3,234.29ha로 전체면적의 62.1%를 차지한다.

영광원자력 5,6호기 건설사업 환경영향평가서(1996)의 자료와 비교해 볼 때 3,732.97ha의 초지가 감소되었으며 정읍시, 임실군, 화순군, 영광군만이 151.66ha 증가되고 나머지 시·군의 초지조성면적은 모두 감소하였다. 부지가 위치하는 영광군의 초지 조성면적은 257ha로 전체의 4.9%에 해당한다. 부지 반경 80km이내의 초지에 대한 장래의 계획면적은 대부분 1999년과 비슷한 수준이며, 전 지역에 대하여 대체로 감소하는 추세이다. 이에 대한 원인은 사회가 점차 도시화되고 농촌인구의 이농현상으로 축산농가의 감소에 따르며, 세부적으로는 축산농가가 사육하고 있는 가축규모에 대해서 현재 소유하고 있는 초지면적은 채산성 차원에서 경제성을 추구하기 어려워 대부분의 낙농 및 축산농가에서는 과거의 건초사료보다 값이 저렴한 볏짚이나 수입사료를 많이 사용하고 있다.

표 2.2-10 반경 80km내 시·군별 초지 조성면적 (단위 : ha, %)

시·군	면 적	비율	시·군	면 적	비율
충청남도			광주광역시	478(-101)	9.2
서천군	34(-10)	0.7			
			전라남도	*	
전라북도			목포시	-(-5)	
전주시	-(-12)		나주시 ⁶⁾	84.5(-238.5)	1.6
군산시 ¹⁾	25((-40)	0.5	담양군	257.44(-53.56)	4.9
익산시 ²⁾	89(-77)	1.7	곡성군	129.60(-290.4)	2.5
정읍시 ³⁾	355(+117)	6.8	화순군	112.66(+1.66)	2.2
남원시 ⁴⁾	701(-4)	13.5	장흥군	87.40(-225.6)	1.7
김제시 ⁵⁾	144(-3)	2.8	강진군	132.50(-17.5)	2.5
완주군	8(-45)	0.2	해남군	298.10(-273.9)	5.7
임실군	413(+28)	7.9	영암군	476.00(-16)	9.1
순창군	82(-182)	1.6	무안군	407.29(-233.71)	7.8
고창군	404(-352)	7.8	함평군	21.04(-421.96)	0.4
부안군	145(-67)	2.8	영광군	257.00(+5)	4.9
Anna fan anna anna anna anna anna anna a			장성군	57.50(-160.5)	1.1
			신안군	9.00(-6)	0.2
			,		
			합 계	5,208.03(-3,732.97)	100.0

자료 : 해당시·도청 축정과, 1999. 주 : 1)옥구군은 군산시에 편입

: 2)익산군은 익산시에 편입, 이리시는 익산시로 명칭변경 : 3)정읍군은 정읍시에 편입, 정주시는 정읍시로 명칭변경

: 4)남원군은 남원시에 편입 : 5)김제군은 김제시에 편입 : 6)나주군은 나주시에 편입

()는 영광 5,6호기 건설사업 환경영향평가서(1996)의 자료와 비교증감치를 나타냄.

2.2.3 농산물의 생산

가. 10km이내의 채소밭

영광군 및 고창군의 채소밭 현황은 표 2.2-11에 나타내었다. 채소밭 면적은 11,179.7ha로서 전체 밭면적 18,269.14ha의 약 61.2%를 차지하며 주요한 채소의 재배면적 및 생산량은 고추 1,607ha(8,485 MT), 2303(4,905MT), 수박 431ha(6,241 MT), 3,107ha(64,563 MT), 무 167ha(9,221 MT), 2,049.4ha(112,064 MT), 배추 166ha(15,081 MT), 630.6ha(78,118 MT), 파

280ha(8,370 M/T, 9.2ha(232 MT) 등이며 기타 채소는 재배면적과 생산량이 미미하다. 영광 5,6호기 환경영향평가서(1996)의 자료와 비교해 볼 때 채소류 재배면적은 1,818.1ha가 증가되었고 생산량은 79,344MT이 증가하였다. 그 이유는 타 시·군에 비해서 비교적 낮은 구롱 지가 많이 발달되어 있고, 비닐하우스 재배와 따뜻한 기후로 곡류보다는 채소류 재배에 용이하기 때문으로 판단된다.

나. 20km이내의 생산량

1) 산출방법

반경 20km이내의 면별 농산물 생산량을 조사하는데 다음과 같은 방법을 적용하였다.

2) 생산량

부지반경 20km내 생산물 총 생산량은 연간 약 557,106ton이며 동남동, 남동, 남남동 방향의 생산량은 전체 생산량의 57.6%를 차지하는 321,056ton이다. 잔여생산물은 내륙이 포함된전 방향에 고루 분포한다. 각 구획별 농산물 생산량은 표 2.2-12와 그림 2.2-7에 나타내었다.

다. 20~80km 사이의 생산물

전술한 2.2.3 나 항과 같은 방법으로 시·군 단위 생산량을 산출하였으며 방위별 구분도 같은 방법으로 하였다. 단, 거리는 20km 이상을 35, 50, 65, 80km로 구분하였다. 반경 20~80km 사이의 농산물 생산량은 부록표 2.2-3과 부록그림 2.2-3에서 나타낸 바와 같이 연간 2,908,124ton이며 함평, 무안, 나주, 화순군 등에 속하는 남동, 남남동, 남방향에서 1,341,911ton으로 전체의 46.1% 정도를 차지하고 있다.

표 2.2-11 채소류 종류별 면적 및 생산량 (면적 : ha, 수량 : MT, 10a당 생산량 : kg)

구분		영 광	군		고 창	그
종류	면적 10a당 생산량(kg)		수량	면적	10a당 생산량(kg)	수량
무우	167	5,522	9,221(-6,548)	2,049.4	5,486	112,064
배추	166	9,085	15,081(+1,383)	630.6	12,521	78,118
양배추	-	***************************************		18	3,372	607
딸기	62	1,410	828	_	_	u
오이	_		-(-494)	2.9	2,600	75(-87)
호박	17	1,950	325(+98)	10.5	2,090	220(-11)
참외	2.1	2,000	42(-320)	3.9	1,400	55(-91)
수박	431	1,488	6,241(+6,241)	3,107	2,078	64,563(+3,721)
고추	1,607	239	8,485(+5,977)	2,303	213	4,905(+229)
마늘	193	1,096	2,116(+107)	60	756	453(-175)
가지					-	
토마토	1	3,300	34(-70)	9.1	2,100	191(+35)
꽈	280	2,990	8,370(+1,732)	9.2	2,430	232(-303)
양파	19	5,806	1,080(+892)	5.0	4,296	215(-404)
당근	11	2,400	264(+125)	2.0	2,150	43(-35)
상추	9	156	1,733(+1,466)			nest.
생강	8	1,000	80(-9)	-		
시금치	58	1,266	734(-3)		_	-
계	2,969.1	38,298	53,806(+9,974)	8,210.6	41,492	261,741(+69,370)

자료 : 영광군 및 고창군 통계연보, 1998

주 : ()는 영광 5,6호기 건설사업 환경영향평가서(1996) 자료와 비교치임.

표 2.2-12 반경 20km이내 농산물 생산량 (단위: MT)

거리(km)		计	-지로부터의	의 거리(km	1)		계
방향	0 - 2	2 - 4	4 - 6	6 - 8	8 - 10	10 - 20	\dagger 11
N	-	*****	-	_	HARV		
NNE	282	134	469	-	1,427	3,763	6,075
NE	596	_	5,762	6,901	4,845	29,068	47,172
ENE	596	4,614	2,892	6,834	5,793	15,834	36,563
E	314	3,278	11,606	8,751	2,770	34,517	61,236
ESE	48	2,586	5,488	7,787	4,810	35,061	55,780
SE	16	4,752	2,376	13,474	13,895	85,511	120,024
SSE	_	3,592	2,842	3,966	10,186	124,666	145,252
S	282	1,442	1,804	1,692	1,176	51,612	58,008
SSW	16	(Chamb)	AAAA	5,108	3,666	18,158	26,948
SW	32				and ·		32
WSW	16	Anger	-	-			16
W	·			PAGE:			
WNW					<u></u>		
NW							
NNW		<u> </u>		-	_		
합 계	2,198	20,398	33,239	54,513	48,568	398,190	557,106

라. 농경지 면적

부지 인근지역인 영광군 및 고창군의 경지면적은 표 2.2-13에서 보는 바와 같이 각 17,706ha(총면적 대비 37.5%), 25,979ha(총면적 대비 42.8%)로서 영광군, 고창군 총면적의 37.%, 42.8%를 점유한다. 부지 인근지역은 산지가 적고 평탄지와 낮은 구릉지가 많아 농경지가 전지역에 넓게 분포되어 있다. 1호당 평균 경지면적은 1.6~1.8ha로 논에서는 벼와 보리를 생산하며 밭에서는 무, 배추, 고추, 수박, 고구마, 감자 등을 생산한다.

본 지역의 경지 면적 변화는 논의 경우, '95년에 비해서 약간 감소하는 경향이 있으나 거의 변화 없이 현 상태를 유지할 것으로 예상되며 밭의 경우도 주택지, 도로 등의 용지개발로 면적이 약간 감소하는 경향이 있으나 개발 가능한 약산지가 많고 그곳에 대한 지속적인 개발이 예상되므로 현 상태에서 큰 변화가 없을 것으로 판단된다.

INTERVAL(KM)	0.0-2.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	10.0-20.0	TOTAL
AGR. PROD. (MT)	2,198	20,398	33,239	54,513	48,568	398,190	557,106
NW 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	596 314 3,278 16 2,586 4,752 3,592 2,3' 2,842 10,18	4,8 6,901 62 6,892 11,606 5,488 7,7 13,474	29,068 345 5,793 334 8,751 2,77 4,810 895 85,511	15,834 EN 15,834 EN 35,061 ES

그림 2.2-7 반경 20km이내의 농산물 생산량

표 2.2-13 영광군 및 고창군의 농산물 생산실적 (단위 : ha)

ū	구별,연도별		영 광 군			고 창 군	
구 분		1995	1996	1997	1995	1996	1997
총 면	적(ha)	47,325 (+178)	47,326 (+54)	47,277 (-7)	60,677.7	60,668.3 (+359.3)	60,687.4 (+382.4)
	논	12,243 (+734)	12,245 (+674)	12,239 (+678)	15,713 (+1,249)	15,611 (+1,141)	15,500 (+1,018)
경지면적 (ha)	밭	5,657 (-1,396)	5,552 (-1,515)	5,467 (-1,555)	10,213 (+34)	10,542 (+366)	10,479 (+338)
	계	17,900 (-662)	17,797 (-841)	17,706 (-877)	25,926 (+1,283)	26,153 (+1,507)	25,979 (+1,356)
농경지의 대한 비	총면적에 율(%)	37.8 (-1.57)	37.6 (-1.83)	37.5 (-1.8)	42.7 (+1.84)	43.1 (+2.23)	42.8 (+1.97)
농가호	.수(호)	11,126 (-2,178)	11,137	10,801 (-1,577)	15,109 (-3,333)	14,534 (-3,610)	14,145 (-3,620)
	ł 경지면적 na)	1.61 (+0.21)	1.60 (+0.17)	1.64 (+0.14)	1.8 (+0.46)	1.8 (+0.44)	1.8 (+0.41)
	미곡	45,180 (-8,729)	58,091 (+3,738)	62,708 (+10,624)	76,051 (-2,910)	83,927 (+4,482)	79,188 (+5,000)
	맥류	10,085 (+56)	12,199 (+3,078)	6,807 (-359)	2,495 (-4,595)	3,027 (-1,206)	4,351 (+118)
식량작물	잡곡	192.8 (-12.2)	108.2 (-22.8)	66.7 (-87.3)		-	
(M/T)	두류 서류	1,402 (-4,453) 2,739 (+195)	765.7 (-3,716.3) 7,103 (+2,655)	1,252.9 (-2,573.1) 7,021 (+3,546)	_		-
	계	59,598.8 (-12,943.2)	78,268 (+5,733)	11,381 (-55,324)	78,546 (-15,169)	86,954 (-816)	83,539 (-730)
채소류	-(M/T)	54,724 (+10,284)	58,580 (+16,820)	53,057 (+2,933)	270,455 (+115,810)	254,804 (+107,641)	261,741 (+69,504)
과실류	과실류(M/T)			1,741 (+854)	4,180 (+2,417)	4,750 (+2,261)	6,573 (+3,654)

자료 : 영광군 및 고창군 통계연보, 1998.

주 : ()는 영광 5,6호기 건설사업 환경영향평가서(1996) 자료와 비교치임.

2.3 해양 이용

2.3 해양이용

2.3.1 해양이용현황

가. 어항. 어장 및 양식장

1) 어항

부지로부터 반경 80km이내의 주요 어항을 꼽으면 수산업협동조합이 위치하는 어항으로서 북쪽으로부터 서천, 군산, 고창, 부안, 영광, 목포, 신안, 해남 등이다. 이중 군산과 목포에는 국립수산진흥원의 수산연구소가 위치하고 있어 수산업 발달에 기여하고 있다(그림 2.3-1).

한편 수산자원의 보전을 위하여 영광지구에는 수산자원보전지구(105.939km)가 지정되어 있으며 함평만 일대는 우리나라 3대 어장중의 하나인 칠산바다를 끼고 있다.

2) 어장

발전소부지 주변의 어장분포는 그림 2.3-2에 나타내었으며, 발전소를 중심으로 영광군과 고창군을 제외한 부지로부터 80km이내 주요 지역에서의 어장은 서천군, 군산시, 부안군, 함평군, 무안군, 목포시, 신안군 등에 분포하고 있으며, 이들 분포현황은 그림 2.3-3과 표 2.3-1에 나타내었다. 서해안은 주로 연근해 어장이 발달해 있으며, 이들 지역에서 어획되는 어류로는 병어, 참조기, 갈치 등이 있다. 이들에 대한 회유경로, 월동장, 산란장을 그림 2.3-4에 나타내었으며, 이들은 제주도 서남방, 중국 상하이 동쪽의 난해에서 월동을 한 후 떼를 지어 북상하며 회유를 시작한다. 전남 영광군 법성포산의 굴비는 크기가 굵고 맛이 좋기로 유명하다. 참조기는 3월 하순에서 4월 중순경에 전남 위도(칠산바다) 부근에, 4월 하순부터 5월 중순경까지에 연평도 근해에, 6월 상순경에 압록강구 대화도 부근에, 6월 하순에는 만주 발해만에 이르러 부근천해의 간석지에서 산란하며, 산란을 마친 조기무리는 계속 북상하여 서해의 가장 깊은 중심해역으로 이동했다가 늦가을이 되면 월동장소인 상하이 근해를 향해 남하한다.

병어는 제주도 남방에서 겨울을 보낸 후, 봄이 되면 서해안과 남해안으로 이동을 시작하여 5월경에 부지 앞 해상을 지나 북상하였다가 9~10월경에 다시 월동장으로 남하 이동한다. 그리고 갈치는 전라남도 근해의 얕은 해역에서 7~9월경에 산란을 하고 북상 후 11~12월경에 남하하여 제주도 서남방에서 월동을 한다.

서해안은 주로 연근해 어장이 발달해 있으나, 어로 어업은 연근해 수산자원의 감소, 수질 오염 등으로 인한 어족자원 번식조건 악화로 인해 감소추세이다. 해양수산부에서는 일반어 장과 양식어장을 통합하여 광역정화체제로 전환하고 사후관리를 강화함으로써 연근해 어장 의 이용을 점차 증대시켜 나갈 계획이다.

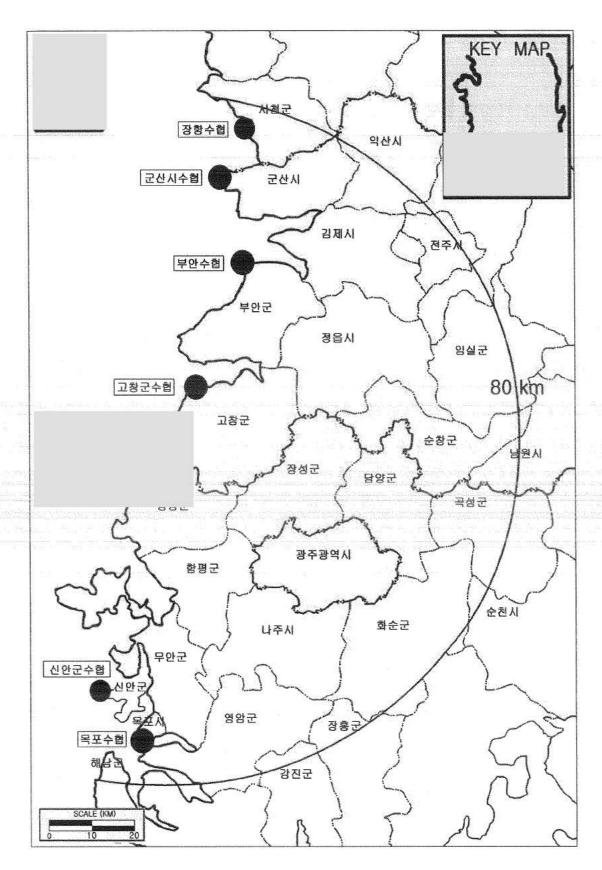


그림 2.3-1 주요 어항의 분포

2 - 50

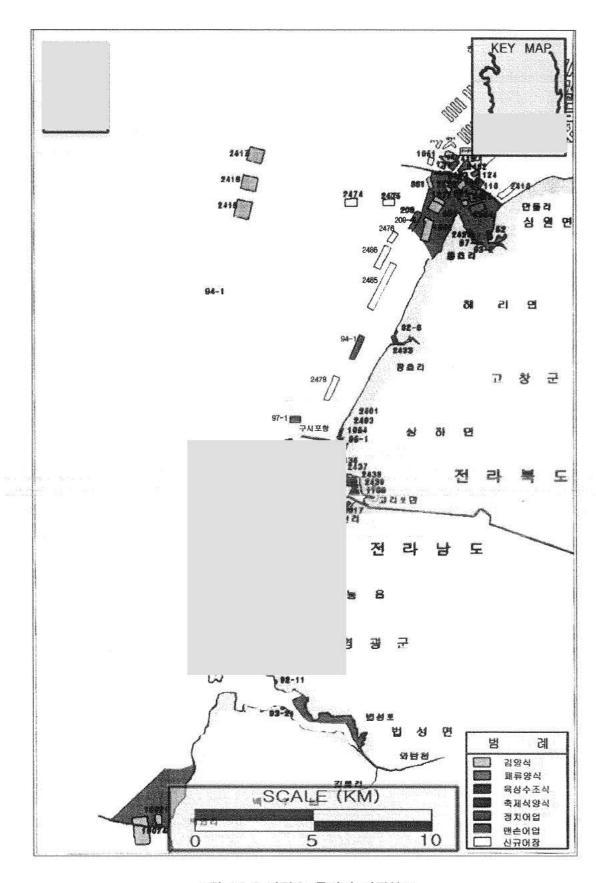


그림 2.3-2 발전소 주변의 어장분포

2 - 51 본 문서는 한국수력원자력(주)이 정보 공개용으로 작성한 문서입니다.

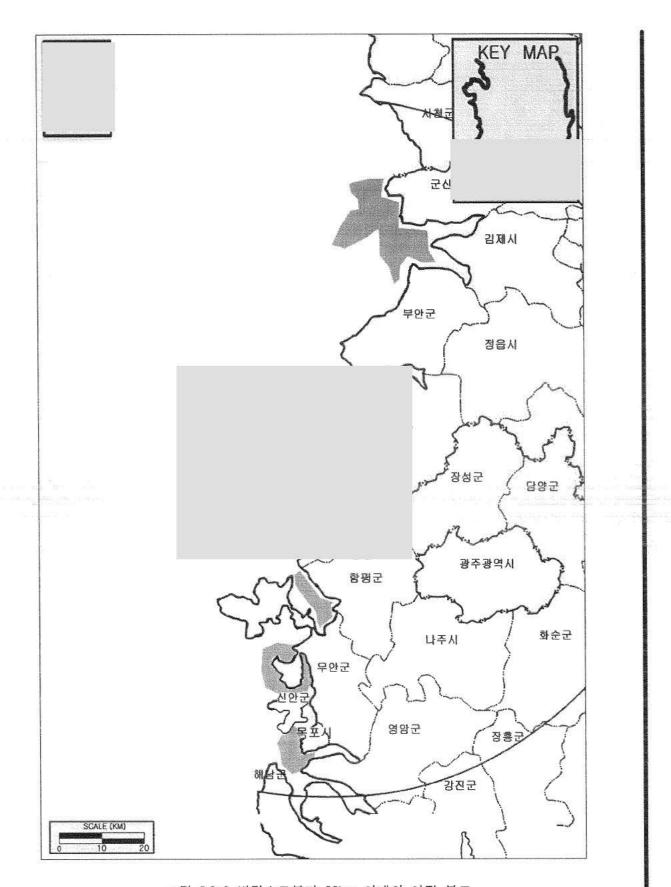


그림 2.3-3 발전소로부터 80km 이내의 어장 분포

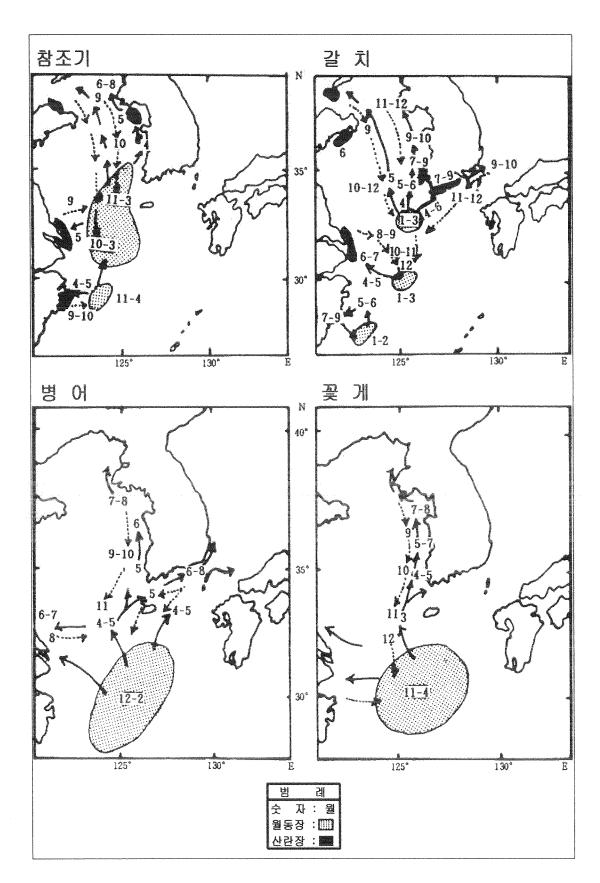


그림 2.3-4 주요 어종의 회유경로, 월동장 및 산란장

표 2.3-1 부지로부터 80km이내 주요지역에서의 어장분포

위치 및	서치	천군	군선	·	고경	항군	영국	항군	무역	<u></u> -
면적 어업별	건수	면적	건수	면적	건수	면적	건수	면적	건수	면적
총계	26	276.16	7	96	35	982.05	7	874.75	72	2,831.3
마을어업	15	265.5	7	96	12	947.5	7	874.75	72	2,831.3
정치어업	1	3			2	10		Name .	_	
허가어업	2	0.08			9	3.68	_			Addition
신고어업	8	7.58	_		12	20.87	-			

자료: 해당군청 해양수산과, 2000년.

3) 양식장

영광군과 고창군에는 각각 어류등양식 8건 50.7ha, 65건 445.33ha, 패류양식 60건 666.5ha, 198건 1,757.94ha 등이 허가되어 있다(그림 2.3-2). 영광군의 양식어장은 대부분이 부지에서 20~30km 남쪽의 함평만 입구에 집단으로 위치하여 주로 김, 백합 양식장 및 마을어장으로 형성되어 있으며 이외에 바지락, 전복, 새우 및 어류가 조금씩 양식되고 있다. 발전소에서 5km 남쪽에 위치한 법성포 하구에는 김, 백합, 전복양식장이 약간 형성되어 있다. 고창군에서는 연안을 따라 평행하게 발달되어 있는 간석지에 김, 바지락, 새고막을 비롯한 가무락, 굴, 정치어장, 마을어장이 분포하고 있다(표 2.3-2~3). 영광군과 고창군을 제외한 부지반경 20km에서 80km 사이에 분포하고 있는 양식장은 북쪽으로부터 서천군(36건 1,141.25ha), 군산시(104건 2,205.15ha), 부안군, 함평군, 무안군(135건 2,135.46ha), 목포시, 신안군에 걸쳐 고루 분포되어 있다. 이들 지역에서는 대부분 김, 파래와 같은 해조류 양식(서천군 : 11건 969ha, 군산시 : 36건 1,361ha, 무안군 : 54건 1,264.76ha)과 바지락, 가무락, 새고막 등의 패류양식(서천군 : 22건 169ha, 군산시 : 60건 775.5ha, 무안군 : 60건 721.25ha)이 주된 어업권으로 형성되어 있으며, 남쪽으로 이동할수록 어류등양식(서천군 : 3건 3.25ha, 군산시 : 5건 6.65ha, 무안군 : 1,101건 21ha)의 비중이 좀더 높아짐을 볼 수 있다. 이들 지역에 대한 양식장 이용현황은 표 2.3-4~6과 같다.

어장 및 양식장 대한 이용계획으로는 매년 해당군청에서 각 도청의 승인을 받아 1년 단위로 계획하고 있으며, 현재까지 이들의 이용계획에 있어서 크게 증가하거나 감소하는 변화는보이지 않고 있다. 그러나 이는 차후 지방자치단체의 수산업 증산 계획과 어민 스스로의 증산 목적에 의하여 이용계획은 증가할 수 있을 것이다. 표 2.3-7~9에는 해당군청별 2000년도 어장 및 양식장 이용계획을 나타내었다.

표 2.3-2 영광군 양식장 현황 (면적단위 : ha)

	구분	7.	1	백수	产量	염소	·면	낙원	ll 면
어업법	遭	건수	면적	건수	면적	건수	면적	건수	면적
ই	· 계	110	1,566.2	43	458.5	43	627.7	24	480
어-	류양식	8	50.7	5	36.5	3	14.2		
	바지락	33	407	23	265	9	137	1	5
3	가무락	12	95	10	85	2	10	_	
패류 양식	굴	3	12.5	_		3	12.5	water	_
0 ,	전복	3	8			Maan	_	3	8
	동죽	9	144	3	56	6	88		-
해조	드류양식	42	849	2	16	20	366	20	467

자료 : 영광군청 해양수산과, 1999.

표 2.3-3 고창군 양식장 현황 (면적단위 : ha)

	-7 }-i		~-3}	어	촌계	개인	• 협업
	구분		계	2	- 협	영어조합법인	
어업	型	건수	면적	건수	면적	건수	면적
ð	5 계	286	2,712.33	76	1,013.76	210	1,698.57
	농어	1	0.55	MAAA		1	0.55
어류	숭어	7	46.2	1	10	6	36.2
등	넙치	1	- 0.38	AMI		1	0.38
	어류	25	165.4	5	46	20	119.4
양식	새우	29	225.8	6	70.3	23	155.5
	조피볼락	2	7		-	2	7
3	는 계	65	445.33	12	126.3	53	319.03
	바지락	114	1,020.84	27	277.9	87	742.94
	가무락	46	431.6	25	260.5	21	171.1
	새꼬막	6	67.5			6	67.5
폐류	굴	21	103	2	10	19	93
양식	홍합	3	30		-	3	30
	백합	2	40	-	Nemo	2	40
	전복	1	5	_	-mass	1	5
	동죽	5	60	1	10	4	50
3	는 계	198	1,757.94	55	558.4	143	1,199.54
ठे	·	19	458.06	9	329.06	10	129
복	합양식	4	51		_	4	51

자료 : 고창군청 해양수산과, 1999.

표 2.3-4 서천군 양식장 현황 (면적단위 : ha)

	구 분	7		서	면	비인]면	다	l 면
어업별		건수	면적	건수	면적	건수	면적	건수	면적
총	계	36	1,141.25	32	553.25	3	400	1	200
어 류	소계	3	3.25	3	3.25	–	<u></u>		-
등	해삼	1	2	1	2	_		ena.	and the second s
양 식	조피볼락	2	1.25	2	1.25	-	_	waterin.	nania.
	소계	22	169	21	157	1	12	_	-
패	바지락	8	59.5	8	59.5				
류	가무락	4	26	4	26	_	-	_	_
양	새고막	6	51.5	6	51.5	_		_	-
식	굴	3	20	3	20		_		-
	백합	1	12	_		1	12	_	
해 3	조류	11	969	8	393	2	376	1-1	200

자료: 서천군청 해양수산과, 2000.6월.

표 2.3-5 군산시 양식장 현황 (면적단위 : ha)

	구 분		계	į.	<u></u> 1		·협업
1 3 4 3 4 3				수 曾		영어조합법인	
어업별		건수	면적	건수	면적	건수	면적
	총계	56	925.8	27	557.5	29	368.3
해결	조류(김)	7	227.5	7	227.5		-
패	소계	44	631.3	17	268	27	363.3
	바지락	0	0	_		***	_
류	피조개	23	370	11	195	12	175
양	새고막	5	80		_	5	80
식	가리비	5	40	3	20	2	20
어	홍합	3	40	-	-	3	40
	가무락	0	0		-		-
업	해삼전복	8	101.3	3	53	5	48.3
어	소계	2	5	_		2	5
류양	축제식	0	0		-	Alan-	_
식	가두리식	2	5		www.	2	5
협 동	소계	3	62	3	62		_
양 식	전복	3	62	3	62		_

자료: 서천군청 해양수산과, 2000. 3월.

표 2.3-6 무안군 양식장 현황 (면적단위: ha)

	구 분	7	1	7) -1 rd 7)	0/
어업별		건수	면적	적지면적	%
총	계	135	2,135.46	5,401	39.5
해조류	소계	54	1,264.76	2,100	60.2
양식	김	54	1,264.76	2,100	60.2
	소계	60	721.25	2,200	32.7
패	至	47	575.75	800	71.9
	고막	2	26.50	358	7.4
양	바지락	7	72.0	482	14.9
^장 식	새고막	2	17.0	250	6.8
7	가무락			250	0
	가리비	2	30.0	60	50
어	소계	21	149.45	1,101	13.6
	어류	14	107.95	350	30.8
양	새우	2	19.0	200	9.5
식	갯지렁이	5	22.50	551	4.1

자료 : 무안군청 해양수산과, 2000. 1월.

표 2.3-7 서천군 어장 및 양식장 이용계획 (면적단위 : ha)

	구 분	7		서	면	मि]면	마시	H면	장형	상읍
어업별		건수	면적	건수	면적	건수	면적	건수	면적	건수	면적
	총 계	18	503	1	3	8	123	7	317	2	60
양식장	해조류	2	300		***	1	50	1	250	Nada .	
ما عا	마을어업	9	175		_	2	54	5	61	2	60
어장	신고어업	7	28	1	3	5	19	1	6	-	_

자료: 서천군청 해양수산과, 2000.

표 2.3-8 군산시 어장 및 양식장 이용계획 (면적단위 : ha)

	구 분	계		
어업별		건수	면적	
	총 계	7	70	
양식장	해조류(김)	1	5	
어장	마을어엄	6	65	

자료: 군산시청 해양수산과, 2000.

표 2.3-9 전라남도 어장 및 양식장 이용계획 (면적단위: ha)

)]H	이용계획					
시군별	건수	면적				
무안군	15	162.80				
함평군	3	25				
영광군	15	171				
신안군	43	1,204.50				

자료: 전라남도 도청 해양수산과. 2000.

나. 해수욕장

부지로부터 80km 이내의 지역에 분포하고 있는 해수욕장으로는 서천군의 춘장대해수욕장, 부안군의 격포, 상록수, 모항, 변산, 위도해수욕장, 고창군의 구시포, 동호해수욕장, 영광군의 가마미, 모래미해수욕장, 함평군의 돌머리해수욕장, 무안군의 톱머리해수욕장, 신안군의대광, 비급원평해수욕장 등 총 14곳으로 1999년도 총 이용객수는 3,207,503명이다(표 2.3-10). 이중 부지로부터 10km 이내에는 3곳의 해수욕장이 포함된다. 부지주변의 해안가에위치하는 3곳의 해수욕장은 가마미해수욕장, 모래미해수욕장, 구시포해수욕장으로서 화장실, 샤워실, 음수대, 파고라 등을 갖추고 있으며, 주로 피서철인 7월과 8월에 많은 휴양객들이찾아든다. 이중 가마미 해수욕장은 발전소와 가장 인접하고 있는 해수욕장으로서 남남서쪽약 1.5km 정도 떨어져 있고, 모래미해수욕장은 남쪽으로 5km, 구시포해수욕장은 북북동쪽으로 약 4km 떨어져 위치한다. 이들 해수욕장 중 가마미는 1999년 9월 현재 79,371명이 이용을 했고, 모래미해수욕장은 영광군에서 관리하지 않는 사설관리시설로서 해수욕객 이용수는 약 30,000명 정도의 해수욕객이 이용하였으며, 구시포해수욕장은 1999년에 63,086명의 해수욕객이 이용하였다(표 2.3-11).

표 2.3-10 부지반경 80km 이내의 해수욕장 이용객수(1999년도)

구 분	해수욕장	1999년 이용객수(명)
서 천 군	춘장대해수욕장	1,837,000
	격포해수욕장	709,427
	상록해수욕장	40,924
부 안 군	모항해수욕장	46,250
	변산해수욕장	84,840
	위도해수욕장	97,079
-, -1 -7	구시포해수욕장	63,086
고 창 군	동호해수욕장	70,826
	가마미해수욕장	79,371
영 광 군	모래미해수욕장	30,000
함 평 군	돌머리해수욕장	78,496
무 안 군	톱머리해수욕장	30,192
1) 6] 7	대광해수욕장	32,000
신 안 군	비금원평해수욕장	8,012
계		3,207,503

자료: 해당군청 문화공보실, 1999.

표 2.3-11 영광군과 고창군의 해수욕객 이용현황

해수욕장	1997년	1998년	1999년(명)
동호해수욕장	38,645	34,949	70,826
구시포해수욕장	75,284	61,937	63,086
가마미해수욕장		144,615	79,371
모래미해수욕장	-		30,000

자료 : 영광군・고창군 문화공보실, 1999.

2.3.2 수산물의 생산

부지로부터 80km내 주요 어항에서의 수산물은 어류, 갑각류, 연체류, 해조류에 대하여 상업용과 자급용으로 분류하여 조사한다.

주요어항에서의 수산물 생산량은 표 2.3-12와 같다.

표 2.3-12 부지로부터 80km내 주요어항에서의 수산물 생산량 (단위: MT)

-1 Al -1 -1	어 류(kg/yr)		갑각류 및 연	크체류(kg/yr)	해 조 류(kg/yr)		
지역명칭	자 급 ^{주1)}	자 급 ^{주1)} 상 업 ^{주2)}		상 업 ^{주2)}	자 급 ^{주1)}	상 업 ^{주2)}	
장 항	4.10E+5	4.10E+6	2.69E+5	2.69E+6	1.57E+5	1.57E+6	
군 산	2.59E+6	2.59E+7	7.65E+5	7.65E+6	1.11E+5	1.11E+6	
부 안	1.66E+5	1.66E+6	7.40E+4	7.40E+5	1.54E+5	1.54E+6	
고 창	8.55E+4	8.55E+5	6.25E+4	6.25E+5	1.53E+5	1.53E+6	
영 광	1.86E+4	1.86E+5	3.12E+4	3.12E+5	6.54E+4	6.54E+5	
목 포	3.33E+6	3.33E+7	7.59E+5	7.59E+6	4.10E+3	4.10E+4	
신 안	8.11E+5	8.11E+6	1.07E+6	1.07E+7	1.06E+6	1.06E+7	

주1) 직접적인 통계자료가 없기 때문에 상업생산량의 10%로 추정.

2.3.3 수상활동

영광 주변 80km이내의 주요 어항에서의 연간 총 해변활동시간과 총 해상활동시간은 각 군의 통계연보에서 연령별 어가인구수를 구한 후 각 연령군의 개인별 연간 해변활동시간과 해상활동시간을 곱하여 총합을 구하며, 연간 총 해수욕시간은 각 해수욕장의 연령별 해수욕 객수에 연령별 개인의 해수욕시간을 곱하여 합산하여 계산한다.

연령군에 따른 해변활동시간과 수영시간, 해상활동시간의 연간 평균 및 최대값은 표 2.3-13과 같으며, 부지로부터 80km내 주요어항에서의 주민활동시간은 표 2.3-14, 주요 해수 욕장에서의 해수욕시간은 표 2.3-15와 같다.

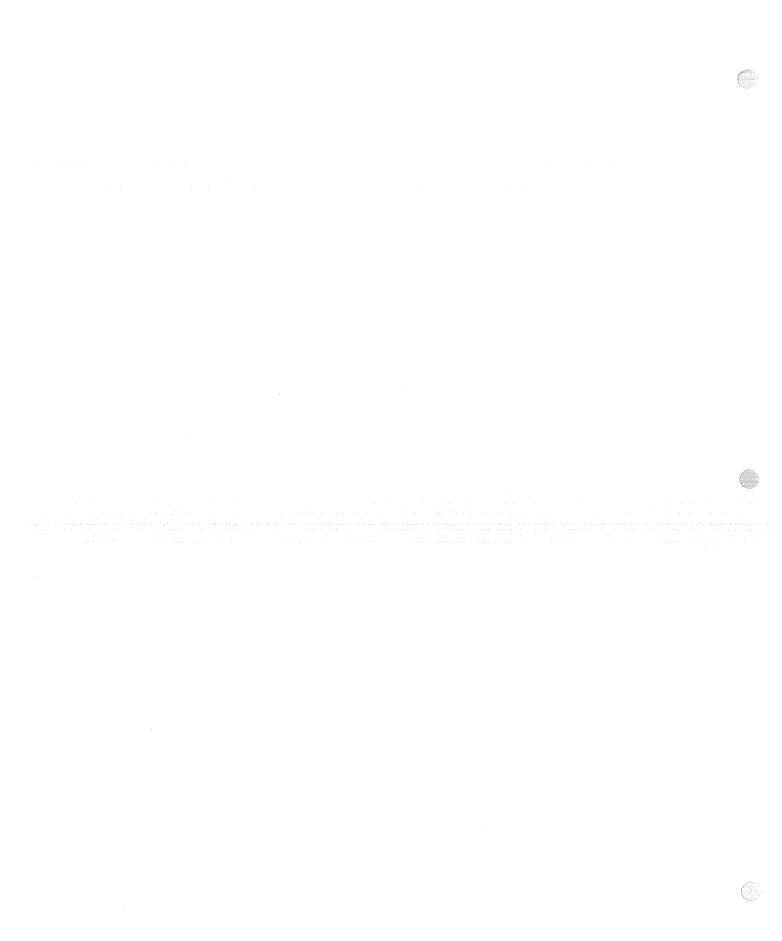
주2) 수산업협동조합중앙회 수산물 계통판매고 통계연보, 1998년도 자료와 해당군청 통계연보, 1998년 자료 중 큰 값을 선택.

표 2.3-13 연령군벌에 따른 해변활동시간, 수영시간, 배타는 시간의 연간 평균 및 최대값 (단위: hr/yr)

7	Ħ	유아	소아	십대	성 인
ביי ליי ליי ליי ליי ליי ליי ליי ליי ליי	평 균	_	9.5	47	8.3
해변활동시간	최 대		14	67	12
ار الم	평 균	_	142	106	21
수영시간	최 대	_	300	240	60
	평 균	****		mass.	2,509
배타는 시간	최 대	_	_	_	3,100

자료 : 방사능 방재 환경 규제기술 개발, 과학기술부.

표 2.3-14 부지로부터 80km내 주요어항에서의 주민 활동시간


지역	거리		해변 활동	시간 (hr)	해상 활동시간 (hr)			
명칭	(km)	소아	십대	성 인	계	15세이하	성 인	계
장항	77	2.09E+4	2.38E+4	5.43E+4	9.90E+4		1.64E+7	1.64E+7
군산	67	2.38E+4	2.18E+4	4.14E+4	8.70E+4	Arme	1.25E+7	1.25E+7
부안	31	3.68E+4	3.26E+4	6.01E+4	1.29E+5	Where	1.82E+7	1.82E+7
고창	25	8.51E+3	1.05E+4	2.23E+4	4.13E+4		6.74E+6	6.74E+6
영광	6	8.57E+3	8.62E+3	1.81E+4	3.53E+4	dany	5.46E+6	5.46E+6
목포	70	1.90E+4	1.82E+4	2.95E+4	6.68E+4		8.93E+6	8.93E+6
신안	48	4.17E+4	5.59E+4	1.35E+5	2.32E+5		4.07E+7	4.07E+7

자료: 해당군청 통계연보, 1998.

표 2.3-15 부지로부터 80km내 주요 해수욕장에서의 해수욕시간

지 역 명 칭	거 리(km)	해수욕시간(hr)					
지 역 명 칭		유 아	소 아	십 대	성 인	계	
동호해수욕장	13	Manada	1.16E+6	5.58E+5	1.15E+6	2.88E+6	
구시포해수욕장	4		1.04E+6	4.97E+5	1.03E+6	2.56E+6	
가마미해수욕장	1.5		1.30E+6	6.25E+5	1.29E+6	3.22E+6	
모래미해수욕장	5	-	4.93E+5	2.36E+5	4.89E+5	1.22E+6	

자료 : 영광군 문화공보실, 고창군 문화체육과, 1999.

2.4 기상 및 대기확산

2.4 기상 및 대기확산

2.4.1 지역 기후

한반도는 유라시아 대륙의 동안에 위치하고 있어서 대륙과 해양에서 이루어지는 기압배치와 위도, 해류 및 지형 등의 모든 기후인자에 따라 종합되어 기후가 결정된다. 본 부지가 위치한 한반도 남서부 전라도 지역의 연평균 기온은 대체로 13 ~ 15℃이고, 1월의 평균 기온이 0 ~ 2℃로써 온화한 편이며, 강수량은 1,100 ~ 1,400mm 정도이고, 겨울철에 강설량이비교적 적다. 또한 동고서저의 전형적 영향에 따라 서부의 해안지대는 대체로 여름철에 남서계절풍의 영향으로 서해의 습윤한 습기를 받는다.

이상 기술한 기후특성으로 말미암아 부지지역의 기후는 대체로 기온의 연교차가 작아 온화하며 강우량이 비교적 많은 기후특성을 나타내고 있다.

한편 부지주위의 국지적 기상특성을 규명하기 위하여 장기간 기상자료가 축적되어 있는 인근 측후소 중 부지와 인접하여 유사한 기후특성을 보일 수 있는 광주와 목포기상대의 기 상자료를 이용하여 분석하였다. 이들 지방 기상청 및 부지의 위치가 그림 2.4-1에 나타나 있다.

광주, 목포 및 부지 기상요소의 극값들을 표 2.4-1에 제시하였으며, 각 기상요소별 평균 및 극값은 지역을 대표할 수 있는 장기간의 값을 월별로 요약하여 부록표 2.4-1~2에 수록하였다.

가. 기 온

통계기간(1961~1998)중 광주의 월평균 기온은 연중 8월이 26.2℃로 가장 높고, 1월이 0. 1℃로 가장 낮으며 연평균기온은 13.3℃이다. 한편 목포의 경우 연평균 기온은 13.7℃이며 월평균 기온은 역시 8월이 26.2℃로 가장 높고 1월이 1.5℃로 가장 낮다. 한편 부지부근의 기상극치를 수록한 표 2.4-1을 보면 광주에서의 최고기온은 1994년 7월 19일 기록된 38.5℃ 이었으며, 최저기온은 1943년 1월 5일의 -19.4℃이었다. 또한 목포에서의 최고기온은 37.0℃ 로서 1994년 7월 24일에 기록되었고, 최저기온은 1915년 1월 13일의 -14.2℃이었다 [목포와 광주의 기상 극값은 각 기상대의 최초 관측시(광주 1939.1, 목포 1904.1)부터 적용되었음].

나. 강수량 및 상대습도

광주와 목포지역의 연평균 강수량은 각각 1,339.1mm, 1,090.0mm로, 월별분포를 보면 7월 에 가장 많아 광주의 7월 평균 강수량은 274.7mm, 목포에서는 201.8mm이었다. 평균적으로

이 지역의 강수는 연중 여름철인 6, 7, 8, 9월에 집중되는 경향을 보이며, 이 기간중의 강수 량이 연 강수량의 60%이상을 차지하고 있다.

광주의 월 최다강수량은 693.3mm로 1989년 7월에 기록되었으며, 목포에서는 1981년 9월에 기록된 584.2mm가 최고기록이었다. 부지주위의 평균 상대습도는 대략 73%정도로서, 광주는 평균 72.3%, 목포는 74.3%이며, 최소 상대습도는 광주와 목포에서 각각 6%(1985.4.9, 1995.4.4), 5%(1992.11.28)였다.

다. 풍향, 풍속

광주의 연중 풍향발생 빈도를 보면 전년을 통하여 서북서풍이 8.5%로 가장 우세했으며 동풍계열의 바람이 비교적 약하게 나타났다. 목포의 경우는 북북서풍 및 북서풍이 각각 25.1%와 11.1%로 우세하게 나타났다. 광주와 목포의 풍향별 월평균 발생빈도를 부록표 2.4-3~4에 수록하였다. 한편 풍향별 평균풍속은 대체로 북서풍 계열에서 강하게 나타났으며 (부록표 2.4-5~6참조), 광주의 순간최대풍속은 32.0m/s 동남동풍으로서 1972년 7월 26일 기록되었고, 목포에서는 1980년 10월 25일 39.2m/s 북북서풍으로 나타났다 (표 2.4-1). 광주의 연평균 정온발생빈도는 10.7%이며, 목포는 4.7%이었다. 연평균 풍속은 광주 2.3m/s, 목포 4.3m/s로 나타났다.

라. 일조율

통계기간(1961~1998)중 연평균 일조율은 광주와 목포에서 각각 51.2%(2266.5시간)와 47.4%(2124.2시간)로 광주가 3.8%(142.3시간) 정도 더 많다. 월별분포를 보면 이동성 고기압의 영향을 받아 맑은 날이 많은 5월과 10월에 비교적 높게 나타났다.

마. 운 량

운량을 보는 방법은 전체 덮인 경우를 10으로 보았을 경우의 상대적인 값이다. 평균운량 (1/10)의 연평균 광주와 목포에서 각각 56.6%, 54.2%로 구름이 끼인 것을 알 수 있다.

바. 태풍 및 폭 풍

부지 주변을 통과한 주요 태풍은 14개이며, 표 2.4-2에 주어져 있다. 풍속 13.9m/s이상인 폭풍의 연평균 발생일수는 광주에서 1.6일, 목포에서 28.9일이었다.

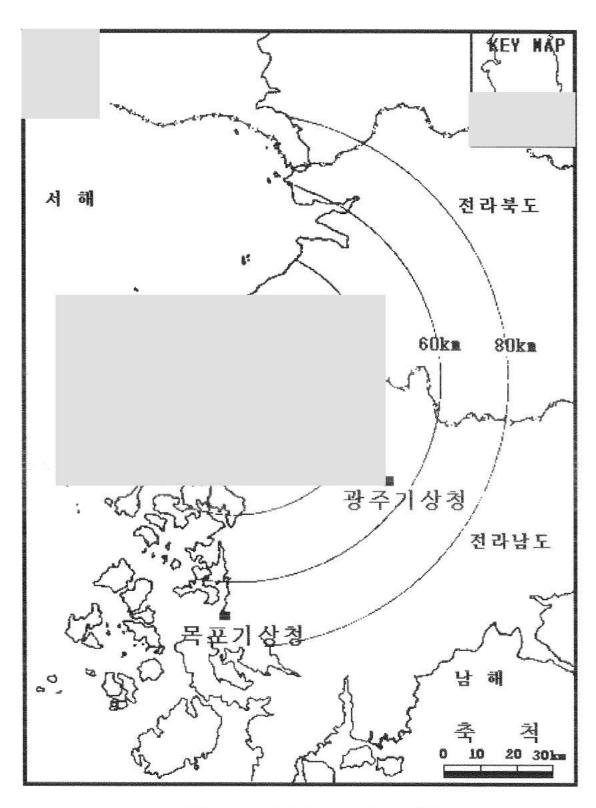


그림 2.4-1 부지 주위의 기상 관측소 위치

표 2.4-1 부지부근의 기상극치

요 소	광 주 ¹⁾	목 포 ²⁾	부 지 ³⁾
최고 기온	38.5	37.0	37.6
(℃)	(1994.7.19)	(1994.7.24)	(1994.8.13)
최저 기온	-19.4	-14.2	-12.1
n (°C)	(1943.1.5)	(1915.1.13)	(1998.1.16)
월최다강수량	693.3	584.2	524.0
(mm)	(1989.7)	(1981.9)	(1997.7)
24시간 최다 강수량	335.6	394.7	162.0
(mm)	(1989.7.25)	(1981.9.2)	(1997.7.6)
순간최대풍속	32 (ESE)	39.2 (NNW)	26.4
(m/s)	(1972.7.26)	(1980.10.25)	(1994.8.1)

자료 : 기상연보(1991~1998) 및 한국기후표(1961~1990)

주) 통계기간 : 1) 1939.1 ~ 1998.12, 2) 1904.1 ~ 1998.12, 3) 1994.1 ~ 1998.12

표 2.4-2 부지 부근을 통과한 주요 태풍

태풍 이름	통과일	최대 풍속	풍향
CARMEN	1960. 8. 23	26.7	S
BETTY	1961. 5. 28	21.1	N
FLOSSIE	1964. 7. 29	20.0	S
HELEN		25.0	navitan S
BILLIE	1970. 8. 30	26.5	S ^T
POLLY	1971. 8. 10	30.0	S
RITA	1972. 7. 26	26.0	SE
IRIS	1973. 8. 17	25.0	SSW
IRVING	1979. 8. 17	27.0	WNW
LEE	1985. 8. 14	22.7	S
VERA	1986. 8. 28	25.7	S
THELMA	1987. 7. 15	24.8	NNW
TED	1992. 9. 24	22.8	NNW
JANIS	1995. 8. 25	23.1	SW

사. 적설량

적설 10cm이상인 적설량의 연평균 발생일수는 광주에서 3.1일, 목포에서 1.8일 발생하였다.

아, 뇌 전

광주, 목포지역의 연평균 뇌전 발생일수는 각각 15.7일, 8.8일로 월별로는 7, 8, 9월에 발생 빈도가 가장 높으며, 이 기간 중 광주에서는 10.4일, 목포에서는 5.1일 발생하였다.

자. 안개발생빈도

광주와 목포에서의 월별 안개 발생일수를 나타낸 부록표 2.4-1~2를 보면 연평균 안개발생일수는 각 통계기간 (광주: 1961~1998, 목포: 1961~1998)동안 각각 16.9일, 23.0일로 전국에서 비교적 안개가 적게 발생하는 지역이다.

2.4.2 부지기상

가. 부지기상 관측계획

부지 내에서 관측되는 기상자료는 발전소 정상가동시 기체폐기물의 방출한계 평가에 대한 기초자료로, 가상사고시 일반인의 피폭선량 평가에 필요한 대기확산 자료와 태풍이나 호우 로부터 발전소를 보호하기 위한 각종 설계자료로 제공되고 있다.

1) 기기 설치

기상관측은 기상관측소 내에서 수행되며, 백엽상에는 지표면의 기온측정을 위한 온도센서와 습도센서가 설치되어 있다. 58m 철탑에는 풍향, 풍속, 온도센서가 설치되어 있으며, 10m 보조철탑에도 풍향, 풍속, 온도센서가 설치되어 있다. 또한 노장 내에는 우량계, 증발계, 적설판(필요시)이 설치되어 있다. 관측하는 기상항목으로는 풍향, 풍속, 대기안정도 등의 미기상, 기온, 습도, 강우량 등의 종관기상, 그리고 적설량은 기상청의 일기예보로 참고할 수 있다. 온도, 습도, 풍향, 풍속, 대기안정도는 10분 이동평균 값(1999.5월 이전은 15분 이동 평균)이며 강우량은 누적량으로 산출한다. 측정기의 신뢰한계가 표 2.4-3에 주어져 있다.

2) 관측방법

각 센서에서 받은 기상자료는 자동으로 수집되며, 또 수집된 자료는 컴퓨터에 의하여 볼수 있고 응용프로그램으로 분석할 수 있다. 수집된 기상자료는 RS-232C 방식으로 환경실험실, 운전원 지원 컴퓨터계통 (OACS, Operator Aided Computer System), 디지털 방사선 감시계통 (DRMS, Digital Radiation Monitoring System) 및 필수 기능 감시계통 (CFMS, Critical Function Monitoring System)으로 전송된다. 아날로그/디지털 변환기 (ADC)에 수집된 자료는 자동으로 매일 주 컴퓨터에 백업된다. 주컴퓨터는 이를 위해 상시 전원에 연결되어 있다.

표 2.4-3 측정기 신뢰한계

분류	정 밀 도	작 동 온 도	응답속도	기동 풍속 및 능력
온도측정기	±0.1℃	-50°C ~ 100°C	1.3초 이내 (0 ~ 100℃)	<u>-</u>
습도측정기	±2%(3 ~ 95%)	-20℃ ~ 75℃	15초 이내 (90 ~ 100%)	-
풍향측정기	±3°	-50°C ~ 85°C	_	0.22 m/s
풍속측정기	10 m/s 이하 0.2m/s 10 m/s 이상 ±1%	-50°C ~ 85°C		0.22 m/s
강수량측정기	±2%	-50°C ~ 85°C	james (0.5 mm (0.2 mm 선택가능)

3) 관측기기 검정 및 관리

가) 관측기기 검정

신호전달 체계의 교정은 6개월 주기로 실시하고 풍향, 풍속, 기온, 습도, 강우량, 증발량 등의 계측기의 교정은 5년마다 한번씩 기상청에 의뢰 실시하며, 구입 시에는 기상청 검정품을 사용한다. 계측기에 영향을 미칠 수 있는 부분 수리나 이상이 발생하면 교정을 수행한다. 나) 기기관리

풍향, 풍속, 대기안정도 관측을 위한 측기는 매일 운전가능 여부를 점검하여 운전상태의 정상여부를 확인한다. 58m 기상탑에 설치된 풍향, 풍속센서는 분기 1회이상 외관 및 센서의 동작상태 등의 이상유무를 현장 점검한다. 58m 풍향, 풍속 관측채널이 7일 이상 관측하지 못할 경우 기술지침서에 준하여 그 후 10일 이내에 기능상실 이유와 복구계획을 기술한 특별보고서를 과기처에 제출한다. 모든 기기의 점검 및 관리, 각 부품의 교체 및 그 시기 등을 제조회사의 사용 설명서에 따르고 주요 기기장애가 발생할 경우에는 전자부문 전문가에 의뢰하여 수리한다.

4) 측정자료

모든 기록지는 작동기간 중 고장 혹은 신뢰성을 확인하기 위하여 전문 기상관측요원에 의해서 세밀히 검토된다. 또한 수리 및 재조정 등이 필요하다고 판단되면 즉시 주도면밀한 계획 하에 필요한 제반조치를 취한다.

5) 자료분석 절차

가능한 한 정확한 자료를 얻고 이를 정확하게 분석하기 위하여 자료분석절차에 따라 자료를 분석한다. 이는 미 규제지침서 1.23에서도 요구하는 사항이다.

가) 측정자료의 정확성 유지

모든 측정자료는 정확도를 유지하도록 유의하며 기록지는 다음과 같이 점검한다.

- 측정자료의 타당성 확인
- 측정자료 및 기기작동의 연속성 확인
- 전원 단절 여부 및 고장여부의 확인

측정자료의 정확도 유지 검정 시 전자장치 및 수감부의 작동불량 또는 고장, 부적절한 영 점조정 또는 기타 요인 등을 점검하도록 되어 있다.

나) 측정자료의 처리

원자력발전소 부지의 기상자료를 분석하는 목적은 대기의 확산능력을 평가하기 위함이다. 이들 분석에 이용되는 온도, 습도, 풍향, 풍속, 대기안정도는 10분 이동평균 값(1999.5월 이전은 15분 평균)이며 강우량은 누적량으로 산출한다. 여기서 풍향·풍속은 매우 중요한 기상요소이며, 방사능 유출물의 대기 중 확산은 난류에 의해 주로 이루어지기 때문에 이 요소또한 중요한 인자이다.

대기안정도는 대기의 확산정도를 평가함에 있어서 매우 중요하다. 대기의 실제 확산정도는 난류의 구조와 강도에 의해 좌우되며 풍속, 연직 온도분포, 바람응력, 지면의 거칠기 등에 의해 결정된다. 따라서 난류의 직접측정은 이러한 영향들이 고려될 뿐만 아니라 확산정도를 보다 확실하게 예측할 수 있다. 대기의 안정은 대개 기온 역전에 기인하며 이때 확산정도는 빈약하고 반면에 불안정은 큰 기온감율과 관련되어 확산정도가 큰 상태를 나타낸다.

대기안정도의 분류는 Pasquill의 분류법을 따르며, 두 층 간의 기온차를 이용하거나 풍향의 변위차에 의하여 산출한다. 기본적으로는 기온 감율에 의하여 대기안정도를 산출하되 대기가 불안정상태이거나 중립상태일 경우 또는 풍속이 1.5m/sec 이상일 경우에는 기온감율에 의한 방법 이외에 풍향변화각의 표준편차에 의한 방법에 의하여도 산출할 수 있도록 구성되었다. 기온 감율에 의한 대기안정도의 산출방법은 아래 식으로 표현되며, 이 식에 의하여계산된 값 및 또한 풍향변화의 표준편차 값에 따른 대기안정도의 분류는 표 2.4-4에 주어졌듯이 심한 안정에서부터 심한 불안정까지 7개 등급으로 나뉜다.

$$\Delta T/\Delta z$$
(기온감율) = $\frac{T58 - T10}{48} \times 100$, [°C/100m]. (2.4.1)

표 2.4-4 대기안정도의 분류

안 정 도	기 온 감 율 (℃/100m)	수평 풍향편차(σ_{θ})의 범위	대기 난류 정도
A : 극히 불안정	$\triangle T/\triangle Z \leq -1.9$	$\sigma_{\theta} \geq 22.5$	
B : 안정	$-1.9 < \triangle T/\triangle Z \le -1.7$	$22.5 > \sigma_{\theta} \ge 17.5$	고
C : 약간 불안정	$-1.7 < \triangle T/\triangle Z \le -1.5$	$17.5 > \sigma_{\theta} \ge 12.5$	
D : 중립	$-1.5 < \triangle T/\triangle Z \le -0.5$	$12.5 > \sigma_{\theta} \ge 7.5$	중
E : 약간 안정	$-0.5 < \triangle T/\triangle Z \le 1.5$	$7.5 > \sigma_{\theta} \ge 3.8$	
F : 안정	$1.5 < \triangle T/\triangle Z \le 4.0$	$3.8 > \sigma_{\theta} \ge 2.1$	저
G : 극히 안정	$4.0 < \triangle T/\triangle Z$	$\sigma_{ heta} < 2.1$	

나, 부지기상 관측결과

부지에서 1994년 1월부터 1998년 12월까지 약 5년에 걸쳐 관측된 자료('94~'98 영광원전 주변 환경방사능 조사보고서)를 이용하여 분석하였으며, 부지기상개황을 표 2.4-5에 월별로 요약 제시하였고 분석결과는 아래에 제시되어 있다. 예외로 대기안정도, 및 그에 따른 계절별, 년별 풍향 및 풍속의 분포는 환경방사능 조사보고서 자료가 미흡하여 영광원전의 풍향, 풍속, 대기안정도의 15분 간격 자료를 기초로 분석하였다.

참고로 정상운전중 혹은 사고시 대기확산인자 계산시 실제 이용된 기상 자료는 5년(199 5~1999) 동안 부지내의 기상 관측소에서 관측한 5초간 (1999년 5월 이후 3초간) 풍향 및 풍속 자료를 15분 간격으로 평균(1999.5월부터는 10분 이동평균)하여 얻어진 대기안정도의 관측치를 같은 기간의 풍향·풍속 자료와 함께 전산처리하여 이용하였다. 1999년 5월부터 평균시간이 15분에서 10분으로 변경된 것은 측정시스템의 변화로 지금 현재 영광발전소에서 이용하는 평균시간과 같도록 하기 위함이다.

1) 기 온

부지의 연평균 기온은 14.2℃이고 월평균 기온의 최고값은 8월에 기록된 27.3℃, 최저값은 1월의 2.0℃이다. 통계기간중 최고 극기온은 1994년 8월 13일에 기록된 37.6℃이었고, 최저 극기온은 1998년 1월 16일에 기록된 -12.1℃이었다.

2) 강수량

1994년부터 1998년까지 부지의 연평균 강수량은 1,157.8mm이었으며 월평균 강수량의 최

대값은 8월의 230.6mm 이었다. 그림 2.4-2의 월별 강수분포도에서 볼 수 있듯이 여름철(6, 7, 8월)의 강우집중율은 55.8%(646.4mm)이고 24시간 최대강수량은 162.0mm로 1997년 7월 6일에 기록되었다.

3) 상대습도

부지에서 상대습도는 연중 안개 및 층운의 발생빈도가 높은 여름철에 높았으며, 겨울철에는 낮았다. 연평균 상대습도는 72.6%이고 최저습도는 1997년 2월에 기록된 12.0%이었다.

4) 풍향 및 풍속

부지에서 연평균 풍속은 2.1m/s로 기록되었는데, 1994년부터 풍속을 측정하는 철탑의 위치가 변경된 관계로 다른 해의 자료통계와 다소 차이가 있을 수가 있다. 계절별로 봄철이 2.1m/s, 여름철 2.4m/s, 가을철 1.8m/s, 그리고 겨울철이 2.1m/s였으며 월별로는 7월이 2.7m/s로 최대이고 9월이 1.7m/s로 최소를 보였다.

한편, 1994년 1월부터 1998년 12월까지 부지에서 나타난 최대풍속은 1994년 8월 1일에 기록된 26.4m/s였다. 최근 5년 간(1994~1998) 부지에서 관측된 바람자료 중 연평균 풍향 발생 빈도를 보면 북풍이 15.5%로 우세하게 나타났다. 계절별로는 전체적으로 북풍계열의 바람이 우세하면서 여름철에는 남풍과 남남서풍이, 겨울철에는 북풍과 북동풍이 계절적 특성으로 우세하게 나타났다(그림 2.4-4~5 참조). 최근 5년 간 부지에서 관측한 바람의 연평균 풍향 발생빈도를 표 2.4-6에 제시하였으며, 그림 2.4-3에 연평균 풍향 발생빈도의 평균 수치를 그림으로 나타내었다.

표 2.4-5 부지의 기상개황 (1994~1998)

<u>岛</u>		월	1	2	3	4	5	6	7	8	9	10	11	12	전년	
3.2	1	월	2.0	2.9	5.9	11.6	17.3	21.7	26.3	27.3	22.7	17.5	11.0	4.3	14.2	
	평균	평균 최고	13.0	13.5	16.3	24.9	28.2	30.0	33.9	35.2	31.7	26.6	21.7	14.0	35.2	
		평균 최저	-7.7	-4.2	-2.2	2.0	7.5	14.3	20.5	20.7	15.0	7.3	1.2	-5.7	-8.2	
기 온		최 고	15.0	18.0	18.5	29.6	31.9	34.8	34.7	37.6	33.1	27.0	23.6	16.0	37.6	
ς Υ	극	발 생 일	97/1	92/19	81/23	98/30	94/21	97/19	97/19	94/13	94/4	78/6	98/16	94/8	94/8/13	
	값	최 저	-12.1	-11.6	-4.3	0.9	6.0	11.6	17.7	18.2	10.2	5.3	-3.2	-9.8	-12.1	
		발 생 일	98/16	84/7	85/10	97/3	84/2	81/1	96/10	87/31	87/27	97/31	98/19	85/17	98/1/16	
	평	균	36.8	23.5	51.3	70.4	91.0	201.6	214.2	230.6	87.3	65.6	60.9	24.6	1157.8	
강		월 최다	45.0	43.5	100.0	114.0	149.0	374.5	524.0	412.5	355.0	151.5	201.0	46.0	524.0	
수량		연 도	98	97	96	98	94	96	97	98	98	94	97	97	97/7	
/ m m	값	일 최다	28.0	30.0	39.0	58.5	78.5	141.0	162.0	122.5	149.5	56.0	75.0	28.0	162.0	
V	The second secon	발 생 일	98/08	97/25	98/19	98/01	97/07	96/17	97/06	98/13	98/30	94/11	97/12	97/06	97/7/06	
	=	평 (%)	72.9	69.4	71.2	74.0	73.6	74.1	80.6	78.8	72.5	68.9	67.1	60.2	72.6	·
상대		최소	27.0	12.0	25.3	26.0	31.5	37.0	53.5	42.0	23.8	13.0	28.2	16.6	12.0	
도	급 값	생일	97	97	98	96	95	96	94	97	95	96	94	98	97/2	
	丏	풍 속	2.0	2.1	2.3	2.0	2.1	1.9	2.7	2.5	1.7	1.9	2.0	2.2	2.1	
바람		최다 풍향	l N	N	N	S	S	SSW	S	S	N	N	N	NE	N	
m,		최대	15.9	17.5	24.6	23.5	21.4	18.2	17.0	26.4	21.9	15.7	21.7	19.7	26.4	
s >		발	98/05	98/19	98/19	96/29	95/13	98/25	98/15	94/01	98/30	97/13	97/25	97/06	94/8/01	
	설 설 량 m)	평 균	17.8	2.5	1.7				_	mbi			0.6	8.0	30.6	

자 료 : '94~ '98 영광원전 주변 환경방사능 조사보고서

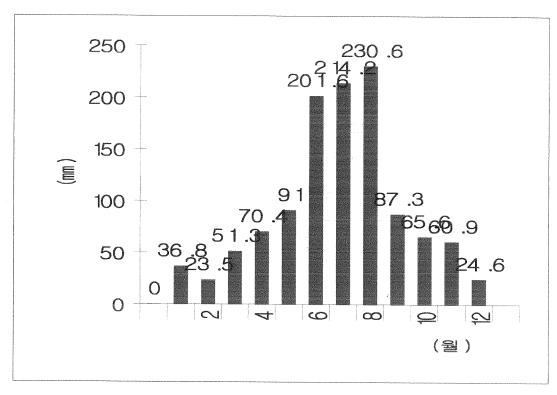


그림 2.4-2 부지의 월별 강수량 분포 (1994.1 ~ 1998.12)

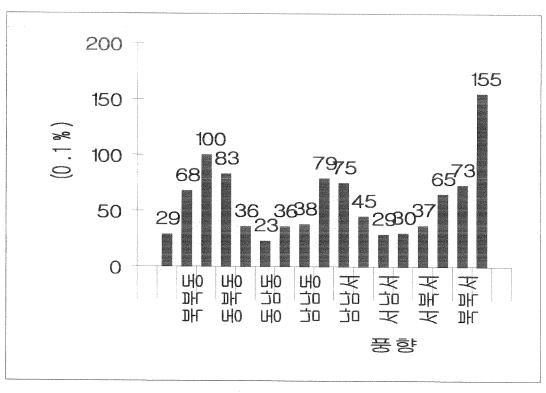


그림 2.4-3 부지의 연평균 풍향 발생빈도 (1994.1 ~ 1998.12)

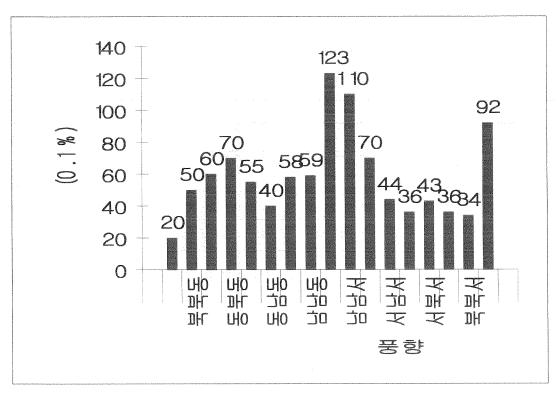


그림 2.4-4 부지의 여름철 풍향 발생빈도

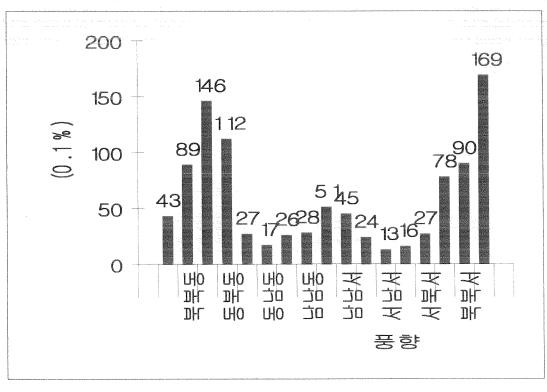


그림 2.4-5 부지의 겨울철 풍향 발생빈도

표 2.4-6 월별 및 연평균 풍향발생빈도 (단위 : 0.1%)

		월							T	I					
풍	향		1	2	3	4	5	6	7	8	9	10	11	12	평균
정		온	59	60	17	59	57	42	10	9	5	9	8	10	29
북	북	동	74	97	66	63	50	61	49	40	64	82	68	96	68
북		동	159	127	69	68	56	63	52	64	155	125	109	152	100
동	북	동	113	67	52	40	45	63	56	92	117	96	97	155	83
	동		32	24	20	22	28	47	44	73	36	38	36	26	36
동	남	동	20	16	23	16	18	30	45	46	14	22	15	15	23
남		동	30	29	27	33	43	44	67	63	22	28	21	18	36
남	남	동	34	22	22	43	44	36	74	68	25	24	29	28	38
	남		52	47	68	106	104	86	153	131	43	45	66	54	79
남	남	서	45	47	66	98	119	116	126	87	40	56	52	42	75
남		서	21	20	40	60	76	84	71	54	25	32	23	30	45
서	남	서	12	10	27	39	50	63	34	36	17	31	13	17	29
	서		14	15	35	41	43	52	30	25	29	37	20	20	30
서	북	서	27	28	41	51	42	54	25	49	38	40	29	26	37
북		서	65	70	125	76	44	. 46	27	36	62	58	72	98	65
북	북	서	67	103	114	81	49	40	26	35	95	83	84	100	73
	북		176	218	186	105	131	73	93	110	211	192	257	113	155

자 료: '94~ '98 영광원전 주변 환경방사능 조사보고서

5) 대기안정도

본 대기안정도의 분석은 기온 감율에 의한 것이며, 최근 5년 간(1995.1 ~ 1999.12) 부지관 측 자료를 근거로 하여 분석한 부지지역의 대기안정도별 발생빈도를 보면 안정상태는 53.4%이었으며, 중립상태는 11.9%, 그리고 불안정상태는 34.8%이었다. 계절별로 안정상태는 가을과 겨울철에 많이 나타났으며, 불안정상태는 상대적으로 봄철에 많이 나타남을 알 수 있다(표 2.4-7). 최근 5년 간(1995~1999) 부지에서 측정한 대기안정도의 각 계절별 및 전년 자료는 부록표 2.4-7~11에 수록되어 있으며, 각 계절별 풍향, 풍속 및 정온 빈도는 표 2.4-8~10에 제시되어 있다.

다. 부지 주변 지형

부지 주변 반경 80km 내외의 주요 도시(기상 관측소 위치)를 포함하는 지형도가 그림 2.4-6에 주어져 있다.

표 2.4-7 계절별 대기안정도의 발생빈도 (1995.1 ~ 1999.12)

계 절	불안정(A~C)	중립(D)	안정(E∼G)
書	43.9	9.1	47.1
여 름	35.8	13.9	50.3
가 을	24.3	12.6	63.0
겨 울	35.0	11.9	53.1
평 균	34.8	11.9	53.4

표 2.4-8 계절별 풍향빈도 (1995.1 ~ 1999.12)

풍 향 계 절	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	합
봄	11.9	8.2	8.6	5.4	2.3	1.7	3.4	3.5	6.9	10.0	6.2	5.1	5.3	5.1	8.0	8.6	100.0
여 름	8.6	6.0	8.1	7.2	5.5	4.8	6.1	6.4	11.4	9.1	5.9	5.0	4.2	3.9	4.1	3.5	100.0
가 을	12.9	12.1	13.9	10.6	6.0	3.9	4.2	4.3	5.6	5.3	3.0	2.1	2.6	2.6	4.7	6.1	100.0
겨 울	11.5	8.5	15.9	12.1	3.2	1.6	3.3	3.3	5.1	5.2	3.5	2.1	2.8	3.8	8.8	9.3	100.0
전 년	11.3	8.7	11.5	8.8	4.3	3.0	4.2	4.4	7.3	7.4	4.7	3.6	3.8	3.9	6.4	6.9	100.0

표 2.4-9 계절별 풍속등급에 따른 풍속빈도 (1995.1 ~ 1999.12)

최대 풍속(m/s) 계 절	2.00	4.00		20.00
봄	34.1	35.8	24.7	5.4
여름	38.6	32.0	22.7	6.7
가 을	42.9	32.6	21.3	3.2
겨 울	31.8	35.4	28.9	3.9
전 년	37.0	33.9	24.3	4.8

표 2.4-10 계절별 대기안정도에 따른 정온빈도 (1995.1 ~ 1999.12)

안정도 계 절	A	В	С	D	Е	F	G	합
节	0.5	0.6	0.4	0.2	0.6	0.7	1.4	4.4
여 름	0.6	0.7	0.2	0.3	1.1	0.5	0.3	3.7
가 을	0.1	0.0	0.0	0.2	1.2	3.0	5.9	10.4
겨 울	2.4	0.1	0.1	0.9	1.1	1.2	1.2	6.9
전 년	0.8	0.3	0.2	0.4	1.0	1.4	2.3	6.3

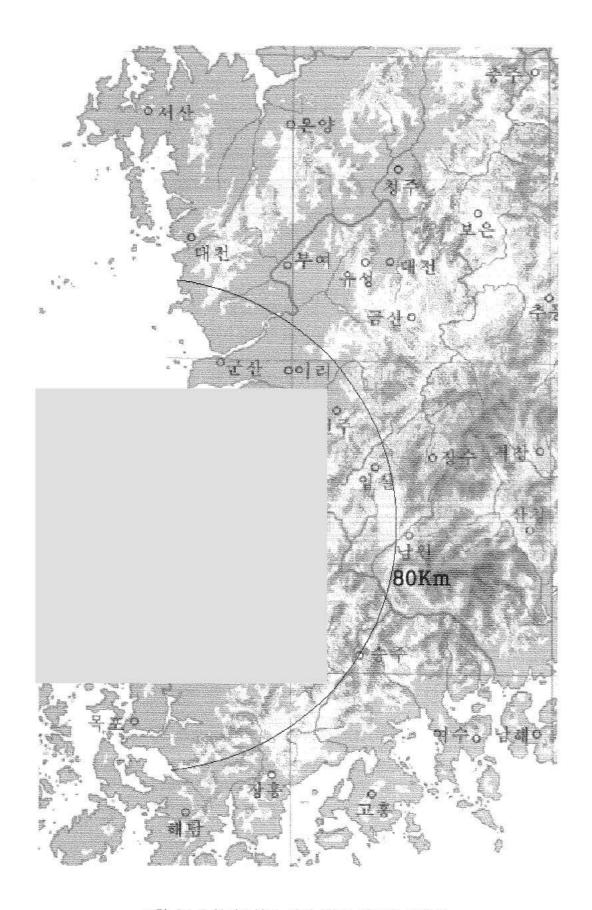


그림 2.4-6 부지로부터 반경 80km 이내의 지형도

2 - **79** 본 문서는 한국수력원자력(주)이 정보 공개용으로 작성한 문서입니다.

2.4.3 정상운영시 대기확산

원전에서 방사성물질은 물리·화학적 그리고 생물학적 이동을 통하여 희석 혹은 농축되어 주변 환경 중에 존재하게 된다. 따라서 원전주변 지역 주민이 받는 피폭선량은 현지의 여러 환경특성에 크게 좌우된다. 그러므로 대기확산 모델은 사용목적 및 범위, 그리고 적용지역의 특성을 고려하여 선정되어야 한다. 지금 영광원전의 ODCM에서 이용되고 있는 대기확산인 자 계산용 코드인 XOQ_DW를 이용하여 대기확산을 다루고자 한다. XOQ_DW 코드는 기본 적으로 통계적 방법에 기초한 가우시안 plume 모델을 이용하며, XOQDOQ 코드를 원용하여 영광원전 부지에 적합하도록 개선된 코드이다. XOQDOQ 코드는 미국 규제기관 NRC의 Reg. Guide 1.111에 기초하여 개발된 코드이다.

XOQ_DW 코드에는 영광 부지에서와 같이 주변 지역이 평탄하지 않아 지형적 영향이 크고, plume이 지나면서 기상 조건이 변화하는 경우를 고려하기 위한 여러 방안이 추가되었다. XOQ_DW 코드에서 대기확산 모델은 이런 영향을 고려하기 위하여 크게 아래와 같이 4가지 측면에서 기존 연구의 개선 및 새로운 모델을 첨가 혹은 개발하여 XOQDOQ 코드를 개선한 방법으로 요약될 수 있다.

1) 한국원자력연구소에서는 1989년 고리주변 환경 종합평가의 일환으로 대기확산 모델을 개발한 바 있다. 이 모델은 기본적으로 XOQDOQ 코드에 바탕을 두고 XOQDOQ 코드가 다루지 못하는 습식 침적 및 복잡한 지형에 의한 Plume에의 영향을 고려하기 위하여 바람장모델을 도입하였다. 그러나 한국원자력연구소에서 수행한 바람장 모델은 논리성이 부족하므로 이를 보정함으로써 바람장 모델을 개선하는 방법을 도입한다. 즉, 원전부지에서 풍속 등급 i, 대기안정도 등급 j에 대한 풍향 k를 위한 발생 확률 $f_{ij}(k)$ 대신에 주변 관측소의 데이터를 이용하여 다음 식으로부터 계산된 확률 f(i,j,k,m)을 대입한다.

$$f(i, j, k, m) = f_o(i, j, k) \times R_1(i, j, k, m)$$

$$+ f_o(i, j, k-1) \times R_2(i, j, k, m)$$

$$+ f_o(i, j, k) \times R_3(i, j, k, m)$$

$$+ f_o(i, j, k+1) \times R_4(i, j, k, m),$$
(2.4.2)

2) 복잡한 지형에 의한 Plume의 감쇄현상을 고려하기 위하여, 지형의 영향에 의한 바람장의 변화를 반영하는 방법(바람장 모델)이외에 지형에 따른 확산의 변화를 관찰하기 위하여유효 고도를 보정하는 방식을 도입한다. XOQDOQ 코드에서도 유효 고도를 계산하나 이는대기조건의 안정 및 불안정에 관계없이 지형 고도는 발전소 부지로부터 계산지점까지의 최고의 지형높이를 그 지점의 지형고도로 가정하여 유효 고도를 계산하게 된다. 따라서 예측된 Plume의 중심선은 다른 어떤 모델보다도 지표면에 가까이 있어 피폭에 직접적으로 영향

을 주게 되므로 가장 보수적인 값을 주게 된다. 이를 개선하기 위하여 3 가지 모델 (XOQDOQ, CRACIT, Valley)을 모두 이용하는 루틴을 삽입하여 사용자가 임의로 선택하여 사용하도록 하였다. CRACIT 모델과 Valley 모델에서는 대기조건이 안정 혹은 불안정(중성)에서 유효 고도를 다르게 계산한다. CRACIT에서는 산악지형의 묘사 시 중성 및 불안정 대기조건 하에서는 산의 높이가 실제 높이의 절반으로 가정하여 유효고도를 계산하게 된다. 안정조건 하에서는 실제 산의 높이를 이용하여 유효고도를 계산한다. Valley 모델에서는 불안정 및 중성 조건 하에서는 실제 산이 존재하지 않는 것처럼 유효고도를 계산한다. 이 모델들을 적용하기 위하여 발전소부지 반경 80km내외의 지형고도가 입력되었다.

3) 방사성 물질은 대기 중에서 이동하여 가다가 감쇄할 수 있으며, 이의 원인은 방사성 붕괴 및 침적을 들 수 있다. XOQDOQ 코드에서는 방사성 붕괴 및 건식 침적이 모델되어 있고, 한국원자력연구소(1989년)는 추가로 습식 침적이 모델되어 있다. 그러나 습식 침적을 고려하면서 이로 인한 Plume 감쇄를 고려하지 않았으며, Plume 감쇄는 무시할 수 있다고 부연하였다. Plume 감쇄가 무시할 수 있는 양이라면 습식침적량도 무시할 수 있는 양이 되어야 하므로 습식 침적은 모델할 필요가 없다. 따라서 습식침적으로 인한 Plume 감쇄가 무시할 수 있는 양인지를 고려하기 위하여 간단한 예제를 살펴보았고, 이 예에서는 습식침적양은 건식보다는 작지만 반감기 2.26일의 방사능 붕괴에 의한 감쇄와 비슷한 것으로 관측되었다. 물론 여기에서 강우량에 관한 기후 정보가 적절히 이용되지 않았으며 간단한 예제임을 첨연한다. 따라서 습식침적으로 인한 Plume 감쇄를 모델할 필요성이 제기되었고, 습식침적 양만큼 Plume에서 감쇄시키는 방법을 도입하여 코드에 적용시켰다.

4) 복잡한 난지형에서 Plume이 이동하여 가다가 안정 대기 조건하에서 산악지형에 부딪혀 침적하는 현상을 고려하기 위하여 Valley 모델을 적용시켰다. 즉, 대기안정도가 안정인경우에, 확산중인 Plume은 Plume의 중심선의 높이보다 높은 산을 만나게 되면, Plume의 중심선이 산과 마주치게 되면서 산의 지표면을 따라 올라가거나, 산등성이를 돌아가게 된다. Valley 모델에서는 Plume의 중심이 산악과 충돌한 상태에서는 400 m의 고도를 움직이면, 방사성 물질이 완전히 감쇄된다고 가정한다. 그리고 400 m 이하의 고도에서는 선형으로 비례하여 감쇄된다고 가정한다. 이 모델들을 적용하기 위하여 발전소부지 반경 80 km 내외의지형고도가 입력되었다.

위와 같이 XOQ_DW 코드는 부지 인근의 기상 및 지형적 특성을 고려하여 영광 원전지역에 적합하도록 개발되었다. 따라서 XOQ_DW 코드를 이용하여 특정 위치 혹은 16 방향의각 거리에 대하여 대기확산인자 X/Q를 계산하는 것 외에 건식침적비 D/Q와 습식침적비W/Q 그리고 이들을 합한 총 침적비 등이 계산된다.

가. 대기확산 인자 및 침적인자 계산 모델

1) 대기확산 인자

XOQDOQ 코드로부터 개선한 XOQ_DW 코드에서 고도방출 및 지표면 방출에 대한 대기확산 인자는 다음과 계산된다:

고도방출;

$$X/Q(k, m) = \frac{2.032}{x(m)} RF(k, m) \times \sum_{i,j}^{N7} \frac{DEPL_{ij}(k, m)DEC_{i}(m)f_{ij}(k, m)D_{ij}(k, m)}{u_{i}(m)\sigma_{zj}(m)} \exp\left(-\frac{h_{ej}^{2}(k, m)}{2\sigma_{zj}^{2}(m)}\right),$$
(2.4.3)

여기서,

X(k,m): 방향격자 k, 거리 m에서 방출원 세기에 의하여 정규화된 평균 방출물 농도 $[\sec/m^3]$.

x(m): 바람방향 거리 [m],

RF(k,m) : 풍향 k, 거리 m에서 공기 재순환 및 정체로 인한 보정 인자.

i : 풍속 등급,

j: Reg. Guide 1.23에 따라 7 개 등급으로 나누어지는 대기안정도 등급,

k : 풍향,

 u_i : 풍속 등급 i의 중간값,

 $\sigma_{zi}(m)$: 거리 m에서 대기안정도 등급 j를 위한 수직 Plume 확산계수 [m].

 $DEPL_{ij}(k,m)$: 풍속 등급 i, 대기안정도 등급 j에 대한 풍향 k를 위한 거리

m에서 Plume 감쇄에 의한 감소인자로써 건식 및 습식침적을 합한 값

 $DEC_i(m)$: 풍속 등급 i를 위해 거리 m에서 방사성 붕괴에 의한 감소 인자,

 $f_{ij}(k,m)$: 풍속 등급 i, 대기안정도 등급 j, 바람방향 k, 거리 m을 위한 바람 발생 확률,

 $D_{ij}(k,m)$: 풍속 등급 i, 대기안정도 등급 j, 바람방향 k, 거리 m을 위한 산악침투로 인한 Plume 잔존율,

 $h_{ej}(k,m)$: 대기안정도 등급 j, 바람방향 k, 거리 m을 위한 유효 Plume 높이 [m].

지표면 방출;

$$X/Q(k, m) = \frac{2.032}{x(m)} RF(k, m) \sum_{ij} DEPL_{ij}(k, m) DEC_{i}(m) \times f_{ij}(k, m) D_{ij}(k, m) [u_{i} \Sigma_{zj}(m)]^{-1},$$
(2.4.4)

여기서 $\Sigma_{zj}(m)$ 은 다음과 같이 정의된다:

$$\Sigma_{zj}(m) = Min\{(\sigma_{zj}^2(m) + CD_z^2/\pi)^{1/2}, \sqrt{3}\sigma_{zj}(m)\}.$$
 (2.4.5)

앞에서 제안된 방법들은 XOQ_DW 코드에 모두 적용되므로써, 기존의 XOQDOQ 코드와 달라진 것은 지표면 농도와 관련하여 다음의 4개의 인자가 달라졌으며 습식침적 및 산악침투에 의한 침적 등이 고려되었다. 지표면 농도와 관련하여 달라진 4개의 인자를 요약하면 다음과 같다:

- 가) $DEPL_{ij}(k,m)$: XOQDOQ 코드에서는 건식침적만 고려되었으나 본 코드에서는 습식침 적에 의한 추가침적을 고려한다.
- 나) $f_{ij}(k,m)$: XOQDOQ 코드에서는 단지 부지의 바람을 이용하나 본 코드에서는 반경 80 km 내외의 바람장을 고려한다.
- 다) $D_{ij}(k,m)$: 산악침투에 의한 침적을 고려하기 위하여 본 코드에서 추가적으로 고려되었다.
- 라) $h_{ej}(k,m)$: 3가지 모델(XOQDOQ, CRACIT, Valley)에 의하여 유효고도를 계산하도록 하였다.

2) 상대 건식 및 습식침적율

각 방향 소구역에 대하여 상대 건식침적율이 특정 거리에 대하여 다음의 상관식에 의하여 계산된다:

$$D/Q(k, m) = \frac{RF(k, m) \sum_{ij}^{M} d_{ij} f_{ij}(k, m)}{(2\pi/16) x(m)}, \qquad (2.4.6)$$

여기서,

D/Q(k,m) : 거리 x, 방향 소구역 k에서 단위 면적당 평균상대 침적 $[m^{-2}]$, d_{ij} : 바람속도 등급 i, 대기 안정도 등급 j에 대한 미국 규제지침 1.111으로부터 상대 침적율.

 $f_{ij}(k,m)$: 풍속 등급 i, 대기안정도 등급 j, 바람방향 k, 거리 m을 위한 바람 발생 확률,

 $f_{ij}(k,m)$: 바람속도 등급 i, 대기 안정도 등급 j에 대한 방향 소구역 k에서 빈도,

x(m): 바람 방향 거리 [m]

RF(k,m) : 거리 x, 방향 소구역 k에서 공기재순환 및 정체를 위한 보정계수.

상대 습식침적율이 특정 거리에 대하여 다음의 상관식에 의하여 계산된다:

$$W/Q(k,m) = \frac{\alpha n}{2\pi x(m)} \cdot \frac{wN_k}{\overline{u}L}, \qquad (2.4.7)$$

여기서,

 α : 단위전환상수 (= $3.17 \times 10^{-11} [m - yr/mm - sec]$),

n: 바람방향의 Sector 수.

 $N_k = \sum_{l} q_{kl} \cdot I_l \cdot 8760 \ hr/yr \ [mm/yr],$

 q_{kl} : 풍향 k와 강수강도 등급 l과의 통계적 상관계수,

 $\overline{L} = 500 m.$

w: Washout Ratio.

3) 산악침투로 인한 Plume 잔존율

Valley 모델에서 Plume의 산악 침투로 인한 Plume의 잔존율 계산은 다음과 같다:

$$D_{ij}(k,1) = \frac{401 - h_{ij}(k,1)}{400}, \qquad (2.4.8)$$

$$D_{ij}(k,m) = \frac{401 - h_{ij}(k,m)}{400} \cdot D_{ij}(k,m-1), \qquad (2.4.9)$$

여기서,

 $D_{ij}(k,m)$: 풍향 k, 거리 m에서 풍속 i, 대기안정도 j에 대하여 산악침투로 인한 Plume 잔존율,

 $h_{ij}(k,m)$: 풍향 k, 거리 m에서 풍속 i, 대기안정도 j에 대하여 Plume의 중심 선보다 상승한 산악 지표면의 높이.

나. 대기확산 인자 및 침적인자 평가

본 평가에서는 영광원자력발전소부지 내 기상관측소에서 15분 (1999.5월부터는 10분) 간격으로 58m 철탑에서 측정한 기상자료 (1995.1.1~1999.12.31까지의 5년 간 자료)를 사용하였다. 유효고도 보정을 위하여 Valley 모델을 적용하였으며, 또한 보수적인 평가를 위하여 지표면 방출로 가정하였다. 기표면 방출로 가정하였기 때문에 지형고도는 유효고도 보정과는 상관이 없지만 산악침투에 의한 Plume 감쇄를 보정하기 위하여 지형고도를 입력해야 한다. 발전소부지 반경 80 km 내외의 지형고도가 입력되었고, 방향별 거리에 따른 지형고도의 자료가 부록표 2.4-12에 주어져 있다. 대기확산 중 방사능 붕괴와 침적에 의한 감소 효과를 고려하기 위하여 X/Q는 방사능 붕괴와 침적을 모두 무시한 경우, 방사능 붕괴(반감기 2.26일) 만을 고려한 경우, 방사능 붕괴(반감기는 8일)와 침적을 모두 고려한 경우로 구분하여계산하였다. 영광발전소로부터 X/Q 및 D/Q의 값이 부록표 2.4-13~22에 주어져 있다. 이들 부록표를 요약하면 다음과 같다.

- 1) 부록표 2.4-13 방사능 붕괴 및 Plume 감쇄를 무시한 거리별 X/Q
- 2) 부록표 2.4-14 방사능 붕괴 및 Plume 감쇄를 무시한 소구역별 X/Q
- 3) 부록표 2.4-15 방사능 붕괴 (반감기 2.26일) 만을 고려한 거리별 X/Q
- 4) 부록표 2.4-16 방사능붕괴 (반감기 2.26일) 만을 고려한 소구역별 X/Q
- 5) 부록표 2.4-17 방사능붕괴 (반감기 8일) 및 Plume 감쇄를 고려한 거리별 X/Q
- 6) 부록표 2.4-18 방사능붕괴 (반감기 8일) 및 Plume 감쇄를 고려한 소구역별 X/Q
- 7) 부록표 2.4-19 거리별 D/Q
- 8) 부록표 2.4-20 소구역별 D/Q
- 9) 부록표 2.4-21 부지의 중첩경계거리에서 X/Q 및 D/Q
- 10) 부록표 2.4-22 LPZ 경계(5700m)에서 X/Q 및 D/Q

방사능 붕괴 및 Plume 감쇄를 무시한 경우를 살펴보면, 바다 방향을 제외한 부지의 제한구역 중첩경계에서 X/Q의 최대값은 북북동 방향에서 1.441E-05 sec/m³이며, 또한 LPZ 경계(5700m)에서 X/Q의 최대값은 남쪽방향에서 6.141E-07 sec/m³이다. 방사능 붕괴 (반감기 2.26일) 만을 고려한 경우를 살피면, 바다 방향을 제외한 중첩경계에서 X/Q의 최대값은 북북동 방향에서 1.436E-05 sec/m³이며, 또한 LPZ 경계(5700m)에서는 5.894E-07 sec/m³이다. 방사능붕괴 (반감기 8일) 및 Plume 감쇄를 고려한 경우를 살피면, 중첩경계에서 X/Q의 최대값은 북북동 방향에서 1.280E-05 sec/m³이며, LPZ 경계(5700m)에서는 4.140E-07 sec/m³이다.

바다방향을 제외한 D/Q 값의 최대값은 중첩경계의 남쪽 방향에서 2.731E-08 /m² 이며, LPZ 경계(5700m)에서는 남쪽방향에서 7.805E-10 /m² 이다.

2.4.4 사고 시 대기확산

가. 대기확산 인자 계산 모델

원자력발전소의 안전성을 평가하기 위하여 설계기준 사고시 방사성 물질의 유출로 인해 인근 주민과 환경이 받게될 영향에 대해 평가하여야 한다. 사고직후 및 사고 후 30일까지의 저인구지역과 제한구역에 대한 대기확산 인자를 계산하는 것이 요구된다. XOQ_DW 코드는 정상운전에 이용되는 대기확산 코드이며, 사고 시 대기확산을 모델하는 방법이 첨가되어야 한다. 현재 영광 5.6호기 건설허가 시 환경영향평가서에서 사고 시 대기확산 계산에는 AZAP 코드가 이용되었다. 이 코드는 Reg. Guide 1.145에 기초하여 개발되었으며, 기본적으로 통계적인 Gaussian 모델에 기초하며 정상운전 중 평가에 비하여 보수성을 갖도록 하였다. 물론 AZAP 코드는 정상운전 중 대기확산인자가 계산가능하며, 기본적으로 XOQDOQ와 똑같이 Reg. Guide 1.111의 방법론에 기초한다. 본 평가서 작성 시에는 PAVAN 코드에 기초한 XOQAR 코드를 이용하여 평가를 수행하였다. PAVAN 코드는 Reg. Guide 1.145에 기초하여 개발되었으며, XOQAR 코드는 PAVAN 코드에 다음과 같은 주요한 기능 등이 추가되었다.

- 1) PAVAN 코드는 총 시간에 대하여 0.5% 혹은 5%(방향 독립) 누적빈도에서 X/Q 값만 계산하는데 비하여, XOQAR 코드에서는 각 방향별 50% 누적빈도에서 X/Q 값을 계산하는 기능이 추가되었다. 원자력시설의 사고로 인해 주변 주민 및 환경에 미치는 방사선 영향을 좀더 현실적으로 평가하기 위해, 각 방향별 50% 누적빈도에서 X/Q 값은 계산 가능하도록 하였다.
- 2) 사고후 중간시간대(2~8시간, 8~24시간, 1~4일, 4~30일)의 X/Q 값을 계산하기 위해서는 정상운영시(Annual Average) X/Q 값과 사고후 0~2 시간 X/Q 값을 대수적으로 내십하여 결정한다. 따라서 정상운영시 대기확산에서 이용되고 있는 XOQ_DW 코드로부터 정상운영시 X/Q 값을 입력받을 수 있도록 코드 인터페이스를 위한 루틴이 추가되었다. 인터페이스를 통하여 XOQ_DW 코드에서 개선된 여러 모델 등이 추가되었다
- 3) 영광 부지에서와 같이 주변 지역이 평탄하지 않아 지형적 영향이 크기 때문에, 지형고 도를 입력할 수 있는 Data 개수를 증가시켰으며, 지형장 모델을 개발하여 코드 입력으로 제 공하였다.
- 4) 16방향에 대한 2개의 계산지점 (제한구역경계, 저인구지대 경계) 외에, 추가로 22개의 정해진 각 계산지점(0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 15.0, 20.0, 27.5, 35.0, 42.5, 50.0, 57.5, 65.0, 72.5, 80.0 km)에서 X/Q 값을 계산하는 기능이 추가되었다.
- 5) 소구역(Segment) 평균의 단기 및 장기 X/Q 값을 계산하는 기능이 추가되었다. 각 방향에 대하여 10개 소구역(1-2, 2-4, 4-6, 6-8, 8-10, 10-20, 20-35, 35-50, 50-65, 65-80 km)

에 대한 소구역 평균 X/Q_{seg} 는 다음과 같이 계산된다:

$$X/Q_{seg}(k) = \frac{R_1 X/Q(R_1, k) + r_1 X/Q(r_1, k) + \dots + r_n X/Q(r_n, k) + R_2 X/Q(R_2, k)}{R_1 + r_1 + \dots + r_n + R_2},$$

(2.4.10)

여기서

 X/Q_{seg} = 소구역에 대한 평균 X/Q

 R_1 , R_2 = 소구역 경계까지의 반경

 r_1 , …, r_n = R_1 과 R_2 사이를 n개로 분할한 동심원의 반지름.

그러면 Reg. Guide 1.145에서 제시한 사고 시 대기확산 인자의 계산 방법에 대하여 살펴보겠다. 대기안정도와 풍향ㆍ풍속의 빈도 분포를 나타내는 결합빈도분포(Joint Frequency Distributions)를 사용하여 제한구역경계와 저인구지역 경계에서 방향 및 시간대별로 상대적방사능 농도인 X/Q 값을 계산한다. X/Q 값은 대기로 방출되는 방사능 물질이 방사능운의 중심선을 따라 정규분포를 이루며 방출점과 X/Q 값이 계산되는 모든 지점들 사이에서 방사능운이 직선으로 이동하는 것으로 가정하여 계산된다. 또한 보수적인 평가를 위하여 지표면 방출로 가정된다.

16방향에 대하여 제한구역경계와 저인구지역경계에서 풍속과 대기안정도의 각 조합에 따른 X/Q 값을 계산하고, 이를 각 방향별 크기 순으로 나열하여 누적빈도분포를 계산한다. 이 값으로부터 해당 방향별 50% 이상의 빈도를 갖는 X/Q 값이 각 방향별로 선정되고 이들 중 가장 큰 값이 규제지침서 1.145에 언급된 최대방향 X/Q 값으로 사용된다.

동일한 방법으로 방향에 무관하게 X/Q 값의 누적빈도분포를 구하여 전체빈도의 50% 이상의 빈도를 갖는 X/Q 값을 결정하고 이 값과 방향별 최대 X/Q 값을 비교하여 큰 값이사고 후 2시간동안의 X/Q 값으로 결정된다.

규제지침서 1.145에서 지표면 방출에 대한 X/Q 값을 계산하기 위하여 이용되는 식들은 다음과 같다:

$$X/Q = \frac{1}{U_{10}(\pi\sigma_{y}\sigma_{z} + A/2)}$$
 (2.4.11)

$$X/Q = \frac{1}{U_{10}(3\pi\sigma_{v}\sigma_{z})}$$
 (2.4.12)

$$X/Q = \frac{1}{U_{10}(\pi \Sigma_{\nu} \sigma_z)} \tag{2.4.13}$$

여기서,

X/Q : 대기 확산 인자(\sec/m^3)

U₁₀ : 지상 10m에서의 평균속도(m/sec)

 $\sigma_{\rm x}$, $\sigma_{\rm v}$: 수평 및 수직 확산계수(m)

A : 건물의 최소 단면적(m')

 $\Sigma_{
m y}$: 대기안정도, 풍속, 풍하거리의 함수로 사행(Meandering Effect) 및 와류효과를 고려한 수평확산 보정 인자

위 식들은 다음 2가지 기상조건에 대하여 달리 적용된다:

- (1) 풍속이 6 m/sec보다 작고 대기안정도가 중립(D) 혹은 안정(E, F, G) 일 때 는 식
 (2.4.11)과 (2.4.12)에서 계산된 X/Q 값 중 높은 값을 선택하여 이것과 식 (2.4.13)
 에서 계산된 값을 비교, 작은 값을 사고 후 2시간 내의 X/Q 값으로 결정된다.
- (2) 그 외의 기상조건의 경우에는 식 (2.4.11)과 (2.4.12)에서 계산된 X/Q 값 중 높은 값을 사고 후 2시간 내의 X/Q 값으로 결정한다.

한편 중간시간대($2\sim8$ 시간, $8\sim24$ 시간, $1\sim4$ 일, $4\sim30$ 일)의 X/Q 값은 규제지침서 1.111에 기술된 정상운영 시 X/Q 값과 2시간대의 X/Q 값을 대수적으로 내삽하여 결정된다. 정상운영 시 X/Q 값은 식 (2.4.4)에 의하여 계산된다.

나. 대기확산 인자 평가

정상운영 시 대기확산 인자 평가에서는 영광원자력발전소부지 내 기상관측소의 58m 철탑에서 측정한 기상자료를 이용한 것과 달리, 사고시 대기확산 인자의 평가는 10m 철탑에서 5초 간격 (1999.5월부터는 3초)으로 측정된 기상자료를 15분 간격으로 평균(1999.5월부터는 10분 평균) 하여 얻어진 기상자료 (1995.1.1~1999.12.31까지의 5년 간 자료)를 사용하였으며, 지표면 방출로 가정하였다.

계산된 결과가 부록표 2.4-23~37에 주어져 있다. 이들 부록표를 요약하면 다음과 같다.

- 1) 부록표 2.4-23 사고 후 시간별, 거리별 대기확산인자
- 2) 부록표 2.4-24 제한구역(560m)에서 사고 후 시간별, 거리별 대기확산인자
- 3) 부록표 2.4-25 LPZ 경계(5700m)에서 사고 후 시간별, 거리별 대기확산인자
- 4) 부록표 2.4-26 사고 후 0~2시간 동안 소구역별 대기확산인자
- 5) 부록표 2.4-27 사고 후 2~8시간 동안 소구역별 대기확산인자
- 6) 부록표 2.4-28 사고 후 8시간~1일 동안 소구역별 대기확산인자
- 7) 부록표 2.4-29 사고 후 1~4일 동안 소구역별 대기확산인자
- 8) 부록표 2.4-30 사고 후 4~30일 동안 소구역별 대기확산인자
- 9) 부록표 2.4-31 제한구역(560m)에서 사고 후 시간별, 거리별 대기확산인자 (정상운영 시

대기확산인자를 XOQ DW 코드 결과 이용하지 않은 경우)

- 10) 부록표 2.4-32 LPZ 경계(5700m)에서 사고 후 시간별 거리별 대기확산인자 (정상운영 시 대기확산인자를 XOQ_DW 코드 결과 이용하지 않은 경우)
- 11) 부록표 2.4-33 사고 후 0~2시간 동안 소구역별 대기확산인자 (정상운영 시 대기확산인자를 XOQ_DW 코드 결과 이용하지 않은 경우)
- 12) 부록표 2.4-34 사고 후 2~8시간 동안 소구역별 대기확산인자 (정상운영 시 대기확산인자를 XOQ_DW 코드 결과 이용하지 않은 경우)
- 13) 부록표 2.4-35 사고 후 8시간~1일 동안 소구역별 대기확산인자 (정상운영 시 대기확산인자를 XOQ DW 코드 결과 이용하지 않은 경우)
- 14) 부록표 2.4-36 사고 후 1~4일 동안 소구역별 대기확산인자 (정상운영 시 대기확산인 자를 XOQ_DW 코드 결과 이용하지 않은 경우)
- 15) 부록표 2.4-37 사고 후 4~30일 동안 소구역별 대기확산인자 (정상운영 시 대기확산 인자를 XOQ DW 코드 결과 이용하지 않은 경우)

바다방향을 제외한 제한구역(560m)에서 사고 후 2시간이내의 X/Q 값의 최대값은 서남서 방향에서 1.40E-04 sec/m³이며, LPZ 경계(5700m)에서는 서남서 방향에서 7.50E-06 sec/m³이다. 부록그림 2.4-1~2에 부지의 중첩경계와 LPZ 경계(5700m)에서 사고 후 2시간 및 4~30일, 그리고 정상운영 시 대기확산 인자 값이 그려져 있다. 또한 정상운영시 대기확산인자를 XOQ_DW 코드 결과 이용하지 않은 경우에 부록그림 2.4-3~4에 중첩경계와 LPZ 경계(5700m)에서의 대기확산 인자 값이 각각 그려져 있다. 부록그림 2.4-1과 2.4-3은 거의 차이가 없는 것으로 보인다. 이것은 평가 지점이 기체방사성물질의 방출지점에 가까워 습식침적, 산악침투에 참적, 방사성 붕괴 등에 의한 효과가 거의 나타나지 않았기 때문이다. 부록그림 2.4-2과 2.4-4을 비교하면, 사고후 2시간 동안의 대기확산 인자는 동일하며, 정상운영시 대기확산인자 및 정상운영시 대기확산인자가 보간법에 의해 이용되는 4-30일 동안의 대기확산인자 값에서는 차이가 있는 것을 확인할 수 있다.

다. 부지 주변 지형 종단면도

그림 2.4-7에 부지 주변 반경 10km 이내의 지형 종단면도가 주어져 있다.

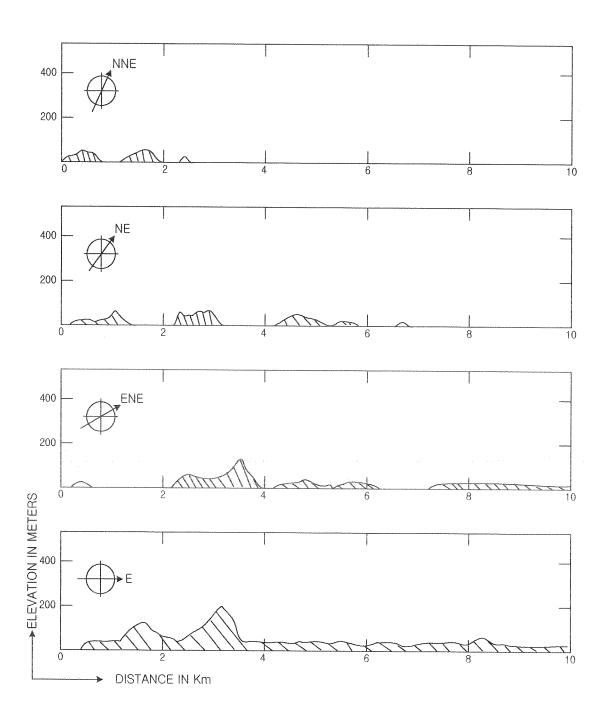


그림 2.4-7 각 방향에 따른 부지로부터 반경 10km 이내의 지형 종단면도

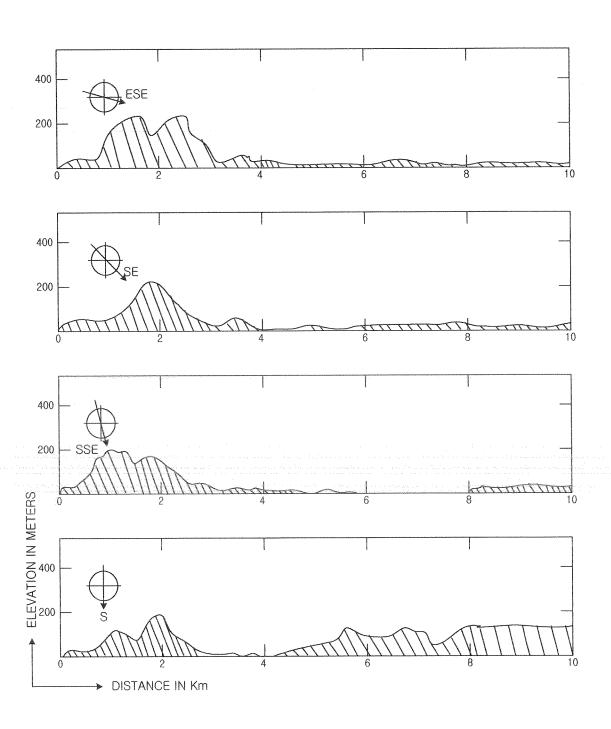


그림 2.4-7 각 방향에 따른 부지로부터 반경 10km 이내의 지형 종단면도 (계속)

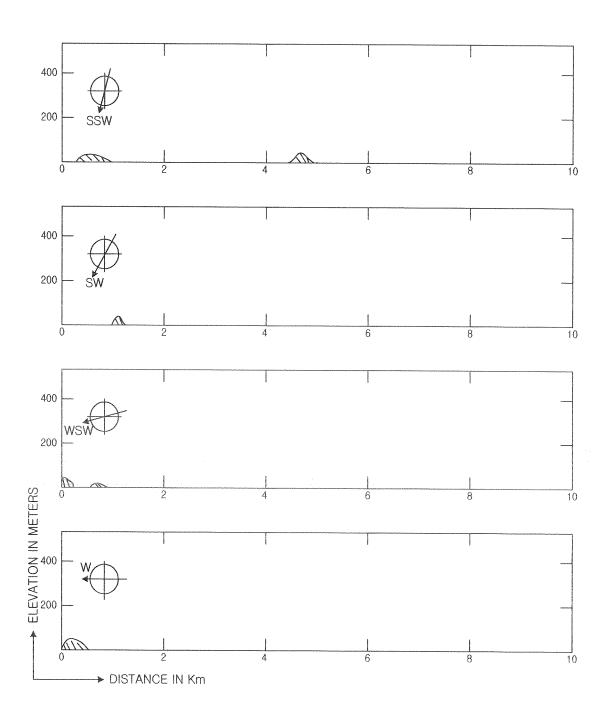


그림 2.4-7 각 방향에 따른 부지로부터 반경 10km 이내의 지형 종단면도 (계속)

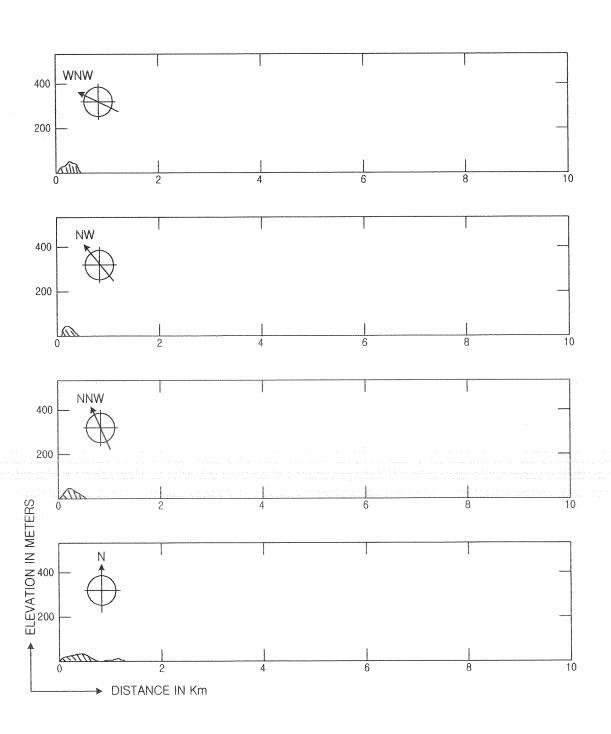


그림 2.4-7 각 방향에 따른 부지로부터 반경 10km 이내의 지형 종단면도 (계속)

2.5 수문 및 수문확산

2.5 수문 및 수문확산

2.5.1 지표수 현황

가. 분포

영광원자력 5,6호기의 부지는 광주시로부터 떨어진 전라남도 영광군 홍농읍 계마리에 위치하며, 부지 서쪽 및 부지 가운데에 영광원자력 1,2호기 및 영광원자력 3,4호기가 각각 상업운전 중에 있고 부지 동쪽에 영광원자력 5,6호기가 위치하고 있다. 발전소 부지를 중심으로, 지점에 인천강이, 지점에 와탄천이 그리고 지점에 구암천이, 지점에 용대저수지가 각각위치하고 있다(그림 2.5-1). 부지는 금정산과 계양산과 둘러싸여 있어 강우 시에는 이들 유역으로부터 집수되는 유량은 서해로 유입되나 지형상 이들 하천으로 인하여 부지에서 받는홍수의 영향은 없다.

총 집수유역 면적은 그림 2.5-2와 같이 약 5.5 km² 로 성산리 및 계마리 일대의 유역면적이 약 3.5 km², 발전소 부지 및 안마제 일대의 유역면적이 약 2.0 km² 로 이루어져 있다. 강수에 의한 유출수의 유출기구는 부지내의 우수배수계통을 통하거나 또는 직접 지표위를 흘러 도수로와 방수로를 통하여 서해로 배수된다. 부지유역을 통과하는 강이나 하천과 같은 용수원이 존재하지 않기 때문에 발전소에서 이용하는 공업용수 및 생활용수는 부지로부터 북동쪽으로 약 19 km 떨어진 인천강 지류의 고창댐으로부터 취수하여 사용하고 있다. 취수 댐의 유효저수량은 600만 m³이고, 평균유입량은 0.234 m³/sec, 유역면적은 12.6 km², 하상표 고는 EL.15.0m, 하폭은 약 30 m, 저수지의 폭은 약 300 m이다. 용수원의 일최대 가능취수량은 17,000 m³으로 4개 호기 발전 및 5,6호기 건설시 예상되었던 최대용수수요량 13,820 m³/일과 6개호기 발전시 예상되는 최대용수수요량 8,800 m³/일을 만족한다.

부지는 서해안에 접하고 있으며 최대홍수범람을 고려하여 영광원자력 1,2호기 건설당시 부지정지고를 EL. (+) 10.0 m로 정지공사를 완료하였다.

나, 수문학적 특성

1) 발전소 부지의 수문학적 특성

발전소 부지는 금정산과 계양산에 둘러싸여 있어 강우 시에는 이들 유역으로부터 집수되는 일부 수량은 발전소의 방수구를 통하여 서해로 유입되고, 일부 수량은 도수로 좌우 외곽을 종점으로 하여 서해로 유입된다. 그림 2.5-1에 나타낸 바와 같이 성산리와 계마리 일대의 유역은 약 3.5km, 발전소 부지 및 안마제 일대의 유역은 약 2.0km에 달한다.

부지 내를 관통하거나 또는 부지에 영향을 미칠 만한 강이나 하천이 존재하지 않기 때문에 하천범람에 의한 홍수는 고려하지 않으며 다만 육상에서 발생한 홍수원으로 가능최대강수에 의한 유출수의 영향은 국지적인 호우에 의한 영향으로 볼 수 있다. 이에 따라서 영광원자력발전소는 국지적인 호우에 의한 범람에 대하여 안전하도록 배수계통(그림 2.5-2)이 설치되어 있고, 구내배수 계통은 50년 빈도의 확률강우를 설계강우로 하여 유출량을 계산하였으며 영광부지의 전체적인 우수배수 판망에 대한 개략적인 내용은 다음과 같다. 기존 1,2,3,4호기의 우수배수간선은 도수로축 주도로를 따라 취수구축 북방파제의 시작점부근까지 설치하여 우수를 서해로 배출시키고 있으며, 영광 5,6호기 우수배수관거의 간선은 영광 1,2호기 부지정지당시 영광 5,6호기 도수로축 주도로를 따라 방수로 좌안축 야적장부근까지 설치하였다. 따라서 영광 5,6호기 우수배수관거는 구내도로의 노선을 따라 배치하였으며, 영광 5,6호기 도수로 끝단부근에 우수관거 지선의 말단을 계획하여 이미 설치된 간선에 연결시켰다.

2) 부지 인근하천

가) 인천강

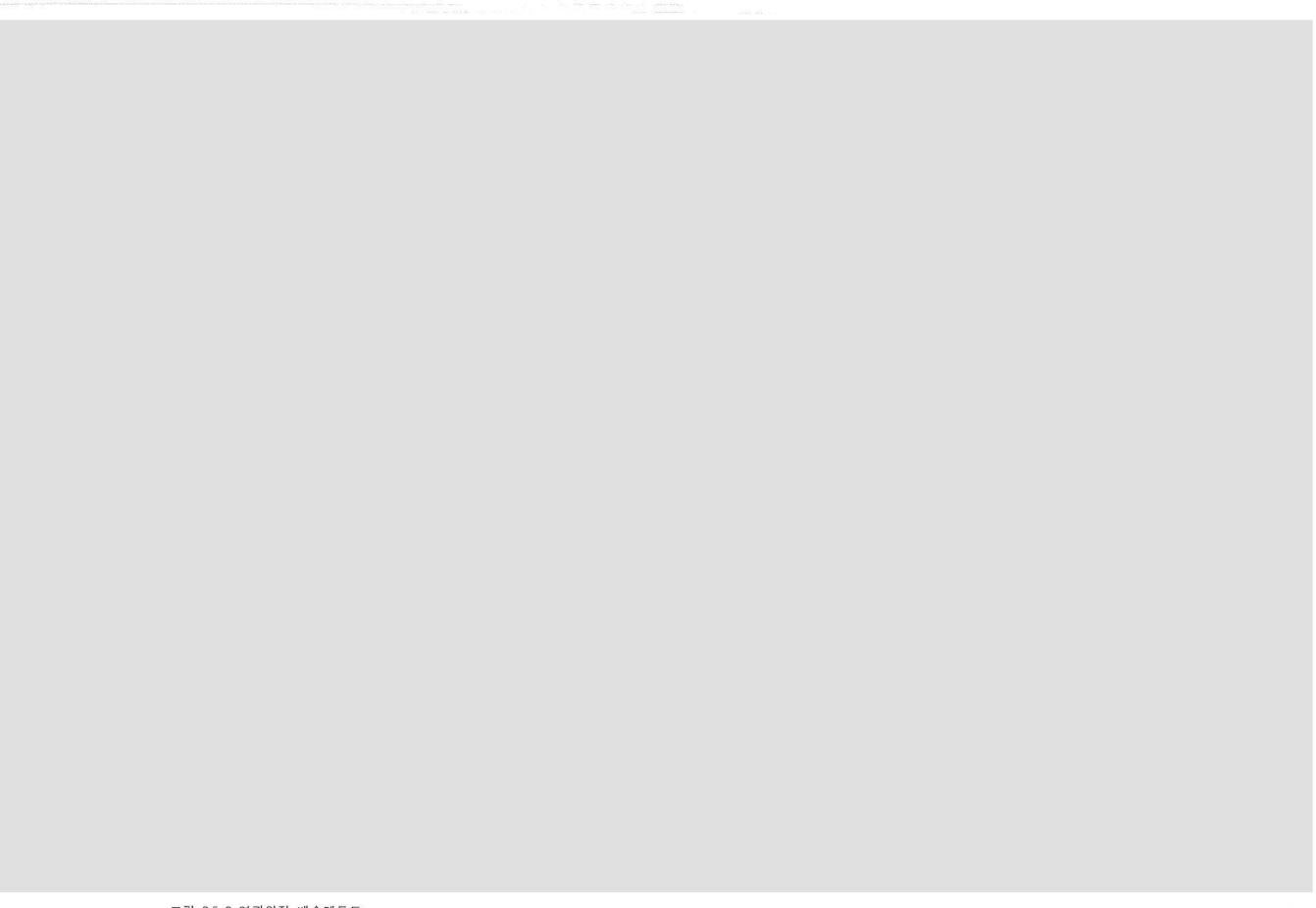
발전소로부터 지점에 위치하며, 전북 고창군 고수면 두평리에서 발원하여 아 산면, 심원면을 거쳐 서해 곰소만으로 유입되며 유로연장이 약 22km, 유역면적이 약 246 km이다.

발전소에 이용되는 용수를 공급하기 위한 취수댐이 본 하천유역인 고창군 아산면 용계리에 설치(유역면적 12.6km)되어 있다. 하폭은 취수댐 지점의 하류 용계리에서 약 100m 이고 용계리 상류부의 평균 하상구배는 1/120 정도이다. 상류유역인 고수면 일대와 하구부근의 아산면, 심원면 일대는 대부분 산지로 조성되어 있으며 무장면, 성송면 일대는 농경지가 많이 분포되어 있다.

나) 와탄천

발전소로부터 지점에 위치하며 영광군 대마면 성산리에서 발원하여 서류하면서 묘량천(10.1 km), 영광천(4.4 km), 대산천(3.5 km) 등의 지류와 합류한 후 법성 포만을 거쳐 서해로 유입한다. 와탄천의 총 유로연장은 22.3km, 유역면적은 184km이며, 하폭은 와탄교 부근에서 약 200m에 달한다. 평균 하상구배는 약 1/170 정도이다.

유역 내에는 장성군과 경계를 이루고 있는 일부만이 산지일 뿐 대부분의 유역이 농경지로 조성되어 있으며 관개용수 공급을 위한 소규모 저수지들이 많이 축조되어 있다.


다) 구암천

발전소로부터 지점에 위치하며 고창군 공음면 두암리에서 발원하여 서해로 유입한다. 본 수계는 유로연장이 8.5km, 유역면적이 약 47km 되는 소하천이다.

이 외에는 이렇다 할 하천이 없으며 고창군 상하면, 해리면 일원의 얕은 구릉에서 발원되는 여러 개의 작은 유역만이 있을 뿐이다.

그림 2.5-1 부지 인근의 지표수 수계도

*

					•
	e e entre en				
		والمستهدي والمستدانية الموادية المادانية المادانية المادانية المادانية المادانية المادانية المادانية المادانية	gran and a substitution of the substitution of		
	and the second s				
	and the second s	and the second s			
	and the second s				
The second section of the section of the second section of the section of the second section of the sect					
The state of the s					
					and the state of t
A control of the cont					
A control of the cont					

2.5.2 지하수 현황

영광지역은 부지내부를 비롯한 부지주변에 지하수계를 이루는 주요 대수층이 형성되어 있지 않으므로 지하수계를 이루는 지하매질에 대한 저류계수나, 수리전도도 등의 측정은 수행하지 않았다. 일반적으로 실트나 황토에서의 수리전도도는 약 $10^{-5} \sim 10^{-9}$ m/s 정도이고, 가는 모래에서의 수리전도도는 $10^{-3} \sim 10^{-7}$ m/s 이다. 또한 저류계수는 보통 수리전도도 값의 약 10배 정도의 값을 나타낸다.

한편, 지하수계를 이루는 지하매질인 일반 토양에 대한 핵종별 흡착계수는 표 2.5-1과 같다.

표 2.5-1 일반토양에 대한 핵종별 흡착계수

ᅰ 고	흡착계수	-(m³/kg)
핵 종	모 래	점 토
H	1.0E-04	1.0E-04
С	1.0E-01	1.0E-01
Ca	9.0E-03	4.9E-01
Fe	2.2E-01	1.6E-01
Ni	4.0E-01	6.7E-01
Со	6.0E-02	5.4E-01
Sr	1.3E-02	1.1E-01
Zr	6.0E-01	3.3E+00
Nb	1.6E-01	9.0E-01
Tc	1.4E-04	1.2E-03
I	1.0E-03	1.8E-01
Cs	2.7E-01	1.8E+00
Sm	2.4E-01	1.3E+00
Pb	2.7E-01	5.4E-01
Po	1.5E-01	2.7E+00
Ra	4.9E-01	9.0E+00
Ac	4.5E-01	2.4E+00
Th	3.0E+00	5.4E+00
Pa	5.4E-01	2.7E+00
U	3.3E-02	1.5E+00
Np	4.1E-03	5.5E-02
Pu	5.4E-01	4.9E+00
Am	2.0E+00	8.1E+00

자료: IAEA, Technical Reports Series No. 364, 1994.

영광 5,6호기 부지 내에 지하수 분포상태를 파악하기 위하여 1993년 10월부터 1994년 4월 말까지 6개월 동안 연속적으로 수위측정이 가능했던 시추지점은 5호기 지역의 5개 지점과 3 개 피조메타공 등 8개 지점이다.

이와 같은 관측결과를 근거로 부지내의 지하수위 분포 및 유동상태를 분석한 결과, 북쪽에서 남쪽방향으로 지하수위가 낮아지는 경향을 보이며, 부지 내 지하수는 자유수면을 갖는 비피압 지하수상태로 존재하고 지하수 등고선은 부지배후의 사면에서 도수로 지역으로 경사져있다. 또한 지하수위 등고선은 암반의 등고선과 유사한 형태를 보이고 있다. 즉 암반의 투수계수가 낮은 지역의 지하수위는 높으며 역으로 투수계수가 큰 지역의 암반에서는 지하수위가상대적으로 저하함을 알 수 있다. 또한 도수로 부근에서의 지하수위는 영광 5,6호기 부지 양측 경계부에서 중앙으로 향하여 지하수위는 EL. 1.0m ~ EL. 5.0m까지 증가하고 있으며 이는 계획부지 중앙에 비교적 투수계수가 낮은 암반이 존재하고 있음을 알 수 있다. 그리고 측정기간동안 대부분 지역의 지하수위변동은 1m 내외로서 비교적 안정된 상태를 보이며 전체부지에서 나타나는 지하수위는 EL. 8.0m ~ EL. 9.0m 지점에 위치한다. 영광 5,6호기 지하수 등고선을 그림 2.5-3에 나타내었다.

자연상태하의 대수층은 집수유역 내에 강하하는 강수의 지하침투 및 침투에 의하여 함양 되며, 지하수 등고선의 경사방향에서 알 수 있듯이 부지 내 지하수는 배후 사면에서 시작하 여 해안지역의 도수로로 유출된다. 본 부지 내에는 지하수를 이용하기 위한 양수우물 또는 급수펌프는 존재하지 않으며 또한 부지의 지하수는 안전관련 설비의 용수공급원으로 이용되 지 않으므로 보호설계기준은 적용되지 않는다.

영광 5.6호기 부지내의 지하수 상태를 파악하기 위하여 예비안전성분석보고서 작성시에 수행한 모든 시추공 및 3개 영구 피조메타공(piezometer hole)에서 측정한 지하수위(그림 2.5-4A ~ 그림 2.5-4C 참조)를 이용하여 관측기간 동안의 변동수위가 고려된 각 구조물별 안정 지하수위를 표 2.5-2에 나타내었으며, 호기별 중요구조물들의 수위관측 결과는 그림 2.5-4A ~ 그림 2.5-4C에 나타내었다.

표 2.5-2 각 구조물별 안정 지하수위

子 분	5 호기 (EL.)	6 호기 (EL.)
원 자 로 건 물	+ 6.0 m	+ 9.0 m
핵 연 료 건 물	+ 2.0 m	+ 9.0 m
보 조 건 물	+ 6.0 m	+ 6.0 m
터 빈 건 물	+ 5.5 m	+ 5.5 m
출 입 통 제 건 물	+ 3.0 m	+ 4.0 m

또한, 영광 5,6호기 부지주변 지하수계는 부지내부의 지하수 형태와 거의 비슷하므로 부지 내부의 형태를 따른다. 유향 및 유속은 부지별로 큰 차이가 없으며, 이는 수리전도도와 지하 수위에 의한 특성으로 결정되고, 유속은 현장 측정방법이 없으며 지하수 모델링으로 계산이 가능하다.

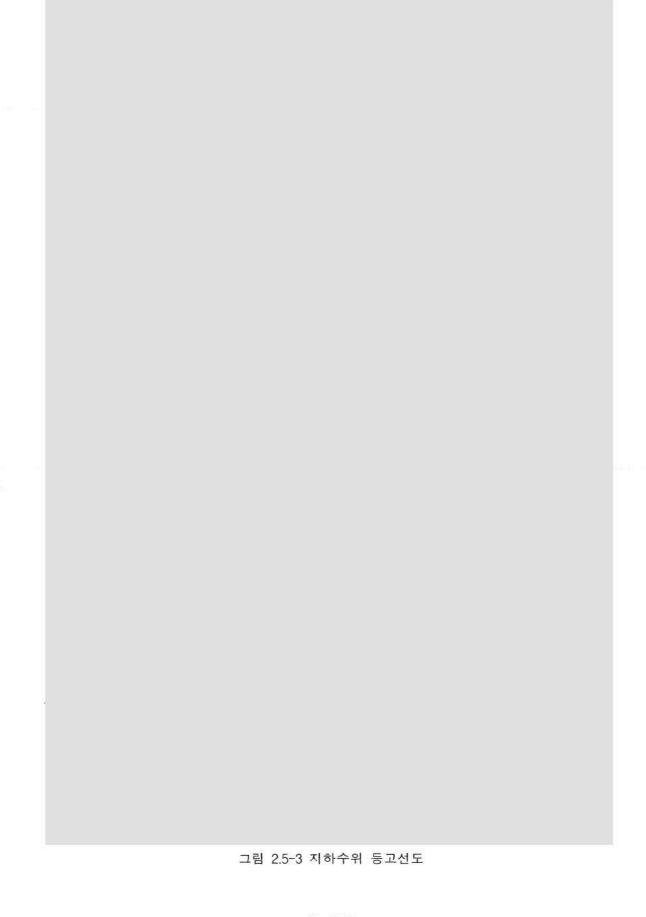
현장에서 암반층의 투수계수(K)를 구하기 위하여 각 호기별로 5호기 지역의 19개 시추공에서 107회, 6호기 지역의 12개 시추공에서 84회 등 총 191회 수압시험을 수행하였다. 시험방법은 계획된 지점에서 더블 팩카시험(Double Packer Test)을 실시하였다. 이때 각 시험구간의 길이는 3.0 m로 시험기 설치의 상부 및 하부지점에 고무팩카를 고정시키고 단계별로압력을 가하여 압력(P) 대비 주입된 액체(물)량(Q)과의 관계로부터 투수계수를 구하였다. 현장시험에서 구한 자료 중 압력(P) 대비 주입수(Q)와의 관계가 정상범주에서 벗어나는 값들은 분석과정에서 제외하였다. 따라서 투수계수(K) 산정에 이용된 자료는 지역별로 구분하여과쇄대가 분포하는 5호기 핵연료건물 및 원자로건물 상부지역(지표면하 22.0 m 지점까지)에서 5개, 원자로건물 하부지역 11개, 그외 기타건물 지역에서 41개 등이며, 6호기 지역은 기초암반 상태가 전반적으로 양호하여 한개 지역으로 구분하여 38개 자료를 이용하였다.

시험자료를 분석한 결과, 5호기 지역의 투수계수 범위는 9.8 x 10^{-4} cm/sec ~ 1.2 x 10^{-6} cm/sec 이며, 각 지역별로 구분하여 대표값으로 제시된 투수계수의 평균값들은 $1.0 \sim 2.0$ x 10^{-4} cm/sec 범위내에 속하는 유사한 값으로 나타났다. 이는 파쇄대 지역의 분석자료가 상대적으로 적었고 파쇄대의 시험구간이 비교적 양호한 암반층에 해당되어 이에 기인된 것으로 판단된다. 따라서 파쇄대 지역의 투수계수(K)는 파쇄대층의 특성을 나타내지 못한다. 그러나 6호기 지역은 기초암반의 공학적 특성값이 높게 나타난 것과 동일하게 투수계수(K)도 2.5×10^{-4} cm/sec $\sim 6.6 \times 10^{-7}$ cm/sec 범위를 갖으며 대표값으로 제시된 평균값은 6.7×10^{-5} cm/sec 이다. 현장 투수시험은 U.S.B.R에서 제안한 일정수두 방법에 따라 실시하였다. 분석과정에서 적용한 공식은 아래와 같고, 분석결과는 지역별로 구분하여 표 2.5-3에 나타내었다.

$$K = \frac{2.3 \times Q}{2 \cdot \pi \cdot L \cdot H} \times \log \frac{L}{r}$$

여기서, K는 투수계수 (cm/sec) Q는 유량 (cc/sec) L은 시험구간 (cm) H는 수두 (cm) r은 시추공 반경 (cm)

표 2.5-3 영광 5.6호기 주요 지역별 투수계수


		८ च्या यो व्य		
구분	파쇄대	원자로건물	기타건물	6호기 지역
분석자료(회)	5	11	41	38
범위(m/s)	$2.1 \times 10^{-4} - 3.1 \times 10^{-5}$	$4.2 \times 10^{-4} - 2.3 \times 10^{-6}$	$9.8 \times 10^{-4} - 1.2 \times 10^{-6}$	$2.5 \times 10^{-4} - 6.6 \times 10^{-7}$
평균값(m/s)	1.2×10^{-4}	1.8×10^{-4}	1.5x 10 ⁻⁴	6.7×10^{-5}

현재 부지주변에서의 지하수 이용현황은 주로 농업용 관정 및 가정용 펌프우물로 활용하고 있는 정도이다. 본 부지에서 가장 가까운 거리에 위치해 있는 양지마을의 경우 신촌 저수지에서 급수원을 취하고 있으며, 단지 몇 가구만이 가정용수로써 소량의 지하수 펌프 우물물을 사용하고 있을 뿐이다. 현재 한국전력공사는 용계취수댐에서 취수된 지표수를 상수도 시설을 통하여 인근 몇 개의 부락에 상수원으로 공급하고 있다. 따라서 인근지역에 지표수의 활용이 풍부하게 되므로, 미래의 지하수 이용현황은 현 수준을 크게 벗어나지 않을 것이다.

본 부지에 분포하는 암석은 백악기 능주 화산암 및 반심성 관입암으로 구성되어 있으며 잔류토 및 붕적토가 기반암을 얇게 피복하고 있다. 일반적으로 암반의 지하수는 절리면 공극을 따라 나타나거나 풍화대 및 파쇄대 내의 공극속에 존재한다. 영광 5,6호기 부지의 암석에 대한 공극률을 표 2.5-4에 나타내었으며, 시추위치도를 그림 2.5-5에 나타내었다.

표 2.5-4 영광 5,6호기 부지의 암석에 대한 공극률

5.3	[7]	6ই	기
시료	공극률(%)	시료	공극률(%)
P5-1-C1	1.04	P6-1-C1	1.252
P5-4-C1	0.482	P6-1-C2	1.233
P5-4-C2	0.479	P6-1-C3	0.879
P5-4-C3	0.5	P6-2-C1	0.984
P5-7-C1	1.157	P6-2-C2	0.81
P5-7-C2	1.15	P6-4-C1	1.015
P5-9-C1	1.101	P6-4-C2	0.925
P5-9-C2	1.006	P6-4-C3	0.814
P5-11-C1	1.137	P6-7-C1	0.43
P5-11-C2	1.082	P6-7-C2	0.425
P5-15-C1	1.07	P6-9-C1	0.72
P5-15-C2	1.057	P6-9-C2	0.491
		P6-11-C1	0.859
		P6-11-C2	1.138

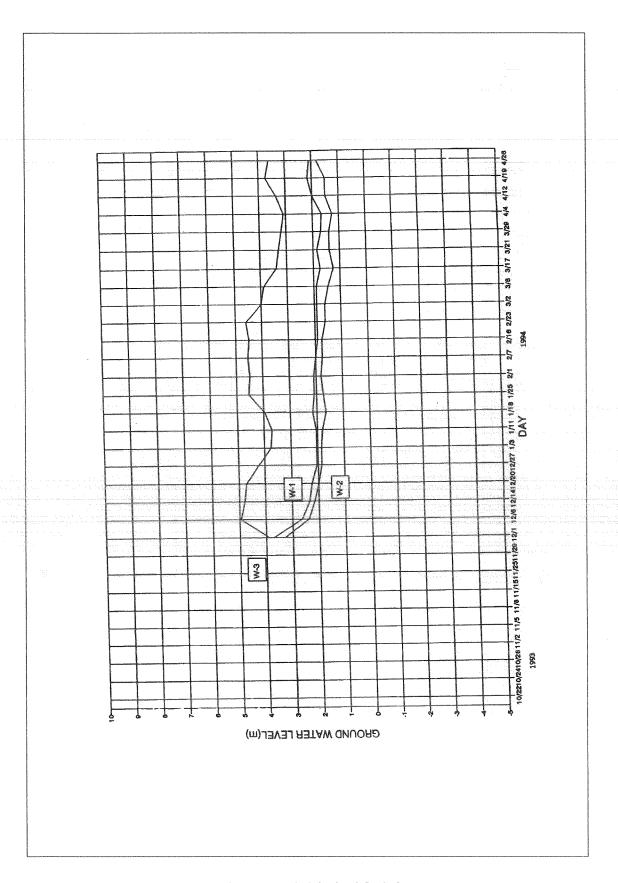


그림 2.5-4A 지하수위 관측결과

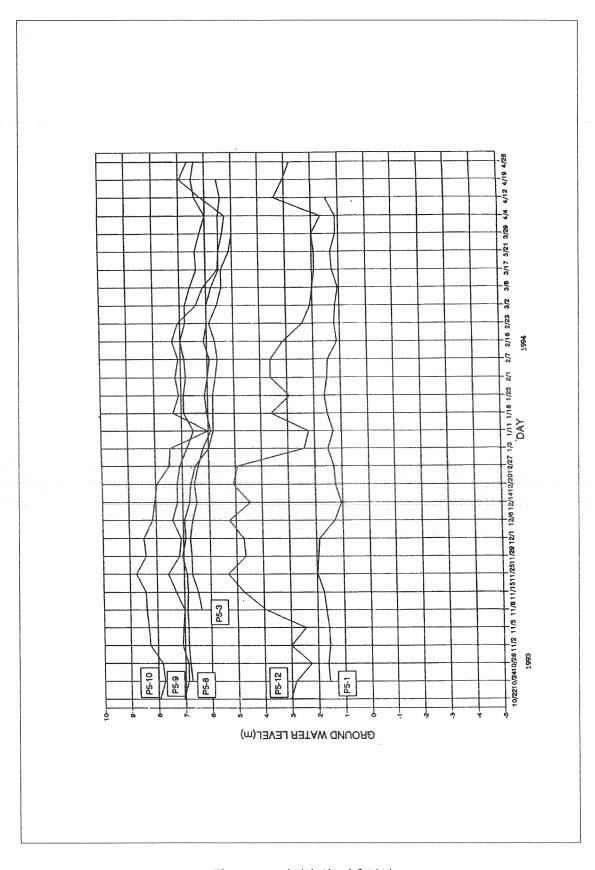


그림 2.5-4B 지하수위 관측결과

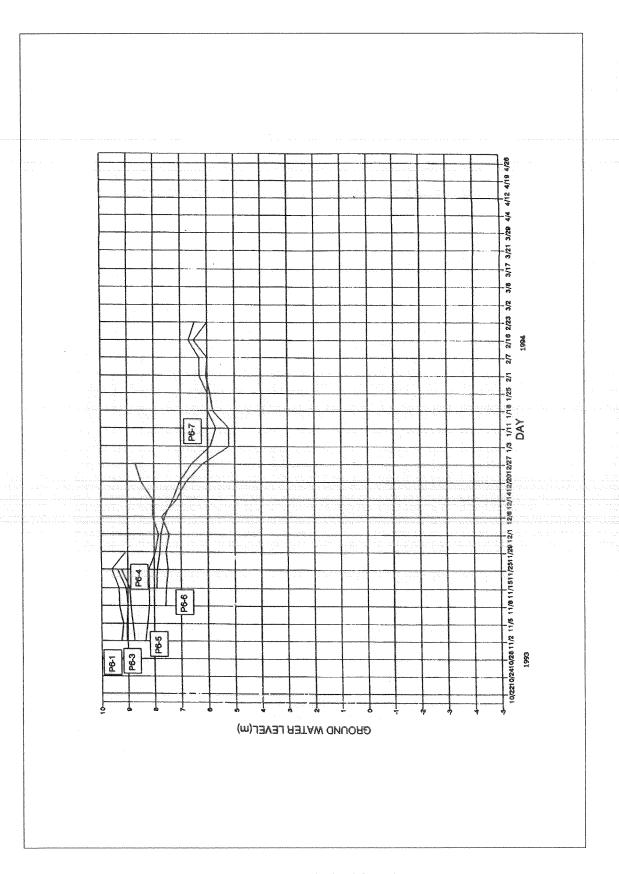
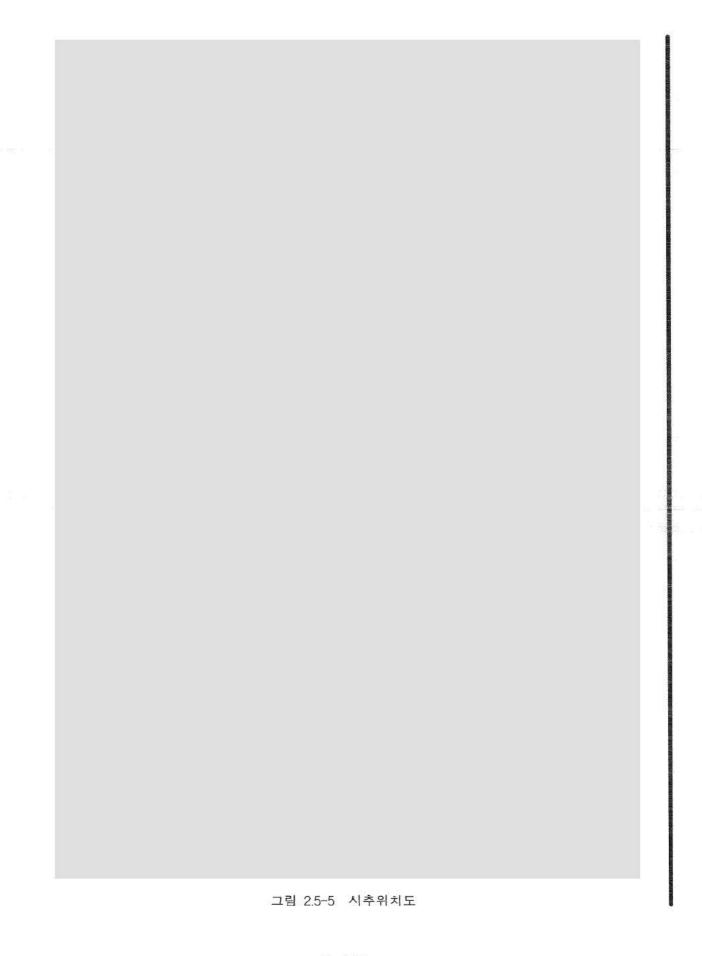



그림 2.5-4C 지하수위 관측결과

2.5.3 수문확산

영광 5,6호기 건물내 설치된 방사성 저장탱크 및 관련 배관의 파손으로 인한 방사성물질의 외부유출을 완화시키기 위한 발전소 설계특성은 최종안전성분석보고서 12.3.1.3절에 기술되어 있다. 즉, 건물내 방사성저장탱크 및 관련 배기관의 파손이 발생할 가능성이 있는 구역의 경우 누출된 방사성물질이 격실 내부에만 국한되도록 설계되어 있다.

옥외에 설치된 방사성 탱크로는 복수저장탱크(condensate storage tank), 원자로보충수탱크(reactor makeup water tank), 화학체적제어계통의 수용탱크(CVCS holdup tank)가 있으나, 원자로보충수탱크 및 수용탱크 주변에는 누설수를 수집하기 위한 방벽이 설치되어 있으며, 탱크 과유량 및 관련배관의 누설수가 액체폐기물처리계통에 의해 처리될 수 있도록 배관이 연결되어 있다. 또한, 복수저장탱크 주변에는 누설에 대비한 방벽설치 및 액체폐기물계통과의 연결이 이루어지지 않았으나 탱크내 오염된 방사성물질의 총량을 제한(10 Ci)하여제어되지 않은 상태에서 액체방사성물질이 방출될 경우에도 비제한구역에 인접한 지하수 및지표수에서의 방사능농도가 과기부고시 2001-2호의 제한치 이내가 될 수 있음을 보장하고있다.

위와 같은 액체방사성물질 누설에 대비한 설계뿐만 아니라, 영광부지의 지하수 흐름 특성 상 부지 내에서 누설된 액체방사성물질이 서해 쪽으로 경사진 지하수의 흐름을 따라 최종적 으로 바다로 방출되기 때문에 제한구역 경계외부의 하천이나 지하수가 오염될 가능성은 없다.

2.6 해황 및 해양확산

2.6 해황 및 해양확산

2.6.1 해황

가. 조사범위 및 시기

1998년 7월부터 1999년 4월까지 물리해황특성(수온, 염분, 해수유동, 부표추적)을 발전소 배수구를 중심으로 16km 이내의 연안해역에서 계절별로 관측하였다.

각 물리해황조사 항목 및 조사정점 수, 관측기기, 조사시기를 표 2.6-1에 종합적으로 정리 하여 제시하였다. 계측장비별 사양 및 사용목적은 표 2.6-2에 제시하였다.

각 항목에 대한 조사정점 위치 및 관측결과는 부록그림 2.6-1~57, 부록표 2.6-1~48에 제 시하였다.

나. 조사 및 분석방법

1) 해수의 염분, 수온조사

해수의 특성을 조사하기 위하여 원자력발전소 주변해역의 표면수온과 표면염분 분포를 조사하고, 취·배수구 및 대조구에서 수층별 수온 및 염분을 조사하였다. 또한 온배수 흐름의 주축을 따라 수 개의 지점에서 수층별 수온을 관측하였다. 수온과 염분은 CTD를 이용하여 관측하였다. 표면수온 및 표면염분 관측 시 선박의 위치는 GPS를 사용하여 결정하였다. 또한 조사결과는 영광원자력발전소 주변 환경조사 및 평가보고서(한국전력공사 전력연구원, 1999) 결과와 영광원자력발전소 4개 호기 가동 시 온배수 확산 실측조사보고서(한국전력공사 사, 1998) 결과를 종합적으로 사용하였다.

2) 연속측류측정

해수의 유동 특성(연속조류)을 파악하기 위하여 고정점에서 계류하여 연속측류하는 오일 러(Euler) 방법을 사용하여 유속분포도, 시간별 유향·유속 분포도, 그리고 표층해류변동을 계절별로 조사하였다. 관측기기로는 미국 Interocean사의 S4 유속계를 사용하였으며, 본 조사에 서는 1분 간격으로 측류 하였다.

3) 부표추적

조사해역 표면 물입자의 유동경로를 추적하기 위하여 표층용 부표(Drifter)를 사용하였다. 부표를 발전소 배수구 앞에 투하하고 10분 간격으로 위치를 기록하여 1시간 동안의 이동경로와 거리를 파악하고자 하였다. 부표의 저항판 수심은 표층류를 효과적으로 관측되도록 해면하 1.5 m로 하였으며, 가로와 세로가 각각 40 cm인 X형 날개를 부착하여 해류를 효율적

으로 반영할 수 있도록 하였다. 또한 해수면 위에 노출되는 부위는 바람의 영향을 최소화하 도록 하였다. 부표 추적 시 선박의 위치는 위성항법장치인 GPS(Global Positioning System) 를 사용하여 결정하였다.

4) 조석측정

영광 주변에서의 조석변화 특성을 규명하기 위해서, 4계절에 걸쳐 영광과 비교지점인 위도에서 평균해수면 기준 조고를 자기검조의(TG-205)를 사용하여 측정하였다.

5) 해양저질조사

영광 주변에서의 해양저질 특성을 규명하기 위해서, 퇴적물 분포, 강열감량과 탄산염함량, 퇴적물내 금속원소 함량에 대하여 계절별로 조사하였다. 시료 채취는 반-빈 채니기를 사용하였으며, 입도 측정은 체의 mesh를 조절하여 측정하였고, 강열감량은 전자로(microwave furnace)를 사용하여 측정하였고, 금속원소 함량은 원자흡광광도계(AAS)를 사용하여 측정하였다.

6) 표층해수부유물조사

부유물 특성파악을 위해서 동계, 하계 2회에 걸쳐 영광주변해역 21개 정점에서 1 Liter 씩의 해수를 채수하여 실험실로 옮긴 후 필터링 방법을 이용하여 부유물질의 농도를 계산하였고, 광학센서로부터의 간접적인 농도 값을 보정하였다. 또한 실험실에서 영국 Malvern사의 Master Sizer를 이용하여 부유물질의 입도분석을 실시하였다(한국전력공사 영광원자력본부, 영광원자력발전소 4개 호기 가동에 따른 온배수 영향 실측조사 보고서, 1998).

7) 해저 수심조사

영광원자력발전소의 배수구를 기점으로 남북방향 20km, 폭 5km 내의 해역에서 선정된 시료채취 정점에서 GPS를 이용하여 측정한 위도와 경도 및 초음파 수심측정장치를 이용하여 측정하였다.

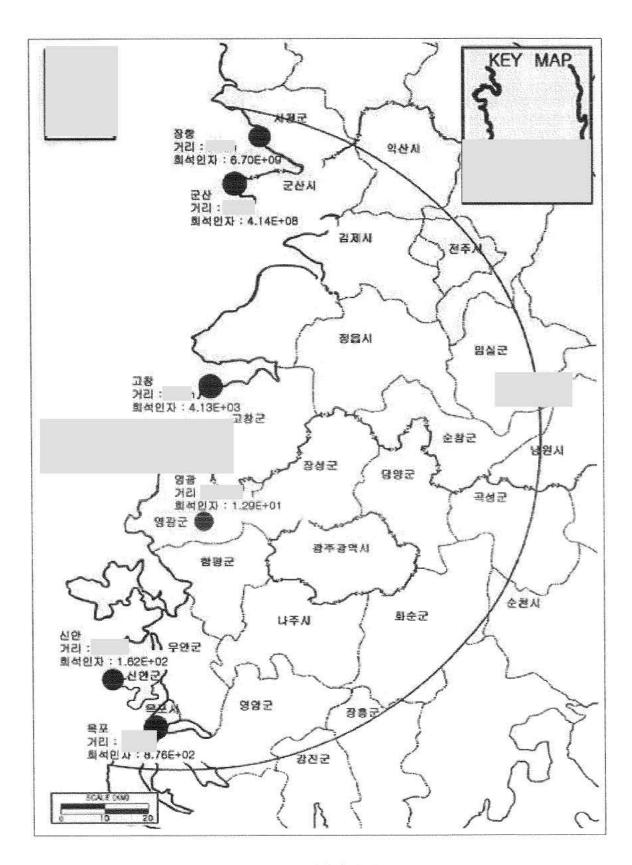


그림 2.6-1 희석인자 분포도

표 2.6-1 물리해양 현장조사 내용 총괄표

관~	추항	관측		관측정점 위치 및 결과		-11 -1	비고	
	목	기간	정점 수	위 치	측	정결과	관측기기	(조사기관)
		1000 7 99	23개 정점	부록그림 2.6-1	부록표 2.6-1 부록표 2.6-2 부록그림 2.6-2 부록그림 2.6-3	표층수온 값(밀물) 표층수온 값(썰물) 표층수온분포(밀물) 표층수온분포(썰물)		
and the state of t		1998. 7. 22	5개 정점	부록그림 2.6-11	부록표 2.6-9 부록표 2.6-10 부록그림 2.6-12 부록그림 2.6-13	수심별수온(밀물) 수심별수온(썰물) 수심별수온(밀물) 수심별수온(썰물)		
引	additional transcription of the property of th	1000 11 0	40개 정점	부록그림 2.6-4	부록표 2.6-3 부록표 2.6-4 부록그림 2.6-5 부록그림 2.6-6	표총수온 값(밀물) 표층수온 값(썰물) 표층수온분포(밀물) 표층수온분포(썰물)		
수	2 m	1998. 11. 3	12개 정점	부록그림 2.6-14	부록표 2.6-11 부록표 2.6-12 부록그림 2.6-15 부록그림 2.6-16		CTD (SBE19)	7) 34 64 7 (1)
정			40개 정점	부록그림 2.6-7	부록표 2.6-5 부록표 2.6-6 부록그림 2.6-8 부록그림 2.6-8	표층수온 값(밀물) 표층수온 값(썰물) 표층수온분포(밀물) 표층수온분포(썰물)	YSI6000	전력연구원
사		1999. 2. 4	17개 정점	부록그림 2.6-17	부록표 2.6-14 부록그림 2.6-18	수심별수온(밀물) 수심별수온(썰물) 수심별수온(밀물) 수심별수온(썰물)		
	- O	1000 4 00	40개 정점	부록그림 2.6-9	부록표 2.6-7 부록표 2.6-8 부록그림 2.6-10 부록그림 2.6-10			
		1999. 4. 20	17개 정점	부록그림 2.6-20	부록표 2.6-15 부록표 2.6-16 부록그림 2.6-21 부록그림 2.6-22	1		

표 2.6-1 물리해양 현장조사 내용 총괄표(계속)

관측	후 항	관측		관측?	정점 위치 및 결과			비고
.5	7	기간	정점 수	위 치	측	정결과	관측기기	(조사기관)
	-	1000 7 00	23개 정점	부록그림 2.6-23	부록표 2.6-17 부록표 2.6-18 부록그림 2.6-24 부록그림 2.6-25	표충염분 값(밀물) 표충염분 값(썰물) 표충염분 값(밀물) 표충염분 값(썰물)		
		1998. 7. 22	5개 정점	부록그림 2.6-33	부록표 2.6-25 부록표 2.6-26 부록그림 2.6-34 부록그림 2.6-35	수심별염분(밀물) 수심별염분(썰물) 수심별염분(밀물) 수심별염분(썰물)		
ਨੌਮੈ		1000 11 0	40개 정점	부록그림 2.6-26	부록표 2.6-19 부록표 2.6-20 부록그림 2.6-27 부록그림 2.6-28	표층염분 값(밀물) 표층염분 값(썰물) 표층염분 값(밀물) 표층염분 값(썰물)		
수 특	염	1998. 11. 3	12개 정점	부록그림 2.6-36	부록표 2.6-27 부록표 2.6-28 부록그림 2.6-37 부록그림 2.6-38	수심별염분(밀물) 수심별염분(썰물) 수심별염분(밀물) 수심별염분(썰물)	CTD (SBE19)	전력연구원
성	교	1000 2 4	40개 정점	부록그림 2.6-29	부록표 2.6-21 부록표 2.6-22 부록그림 2.6-30 부록그림 2.6-30	표충염분 값(밀물) 표충염분 값(썰물) 표충염분 값(밀물) 표충염분 값(씰물)	YS16000	(U \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
八		1999. 2. 4	17개 정점	부록그림 2.6-39	부록표 2.6-29 부록표 2.6-30 부록그림 2.6-40 부록그림 2.6-41	수심별염분(밀물) 수심별염분(썰물) 수심별염분(밀물) 수심별염분(썰물)		
			40개 정점	부록그림 2.6-31	부록표 2.6-23 부록표 2.6-24 부록그림 2.6-32 부록그림 2.6-32	표층염분 값(밀물) 표충염분 값(썰물) 표충염분 값(밀물) 표층염분 값(썰물)		
		1999. 4. 20	17개 정점	부록그림 2.6-42	부록표 2.6-31 부록표 2.6-32 부록그림 2.6-43 부록그림 2.6-44			

표 2.6-1 물리해양 현장조사 내용 총괄표(계속)

n) 2 a	관측항목 관측기간		관측정점 위치 및 결과					표 [변
반숙약	상독	관측기간	정점 수 위치 측정결과		관측기기	(조사기관)		
	연속	1998. 7. 22	1개 지점	부록표 2.6-33 부록그림 2.6-45	부록표 2.6-34 부록그림 2.6-46 부록그림 2.6-47 부록그림 2.6-48	표층유동 유속분포도 시간별 분포도 표층해류변동	S4	전력연구원
해	亭	1998. 11. 3	1개 시점 (정점 A)	부록표 2.6-35 부록그림 2.6-49	부록표 2.6-36 부록그림 2.6-50 부록그림 2.6-51 부록그림 2.6-52	표층유동 유속분포도 시간별 분포도 표층해류변동	· 유 本 계	यन्या स
유		1998. 7. 22			부록표 2.6-37 부록표 2.6-38 부록그림 2.6-53 부록그림 2.6-54	부표이동위치(밀물) 부표이동위치(썰물) 부표이동경로(밀물) 부표이동경로(썰물)		
특 성	부 표 추	1999. 2. 4	1개 지점 (정점 A)		부록표 2.6-39 부록표 2.6-40 부록그림 2.6-55 부록그림 2.6-55	부표이동위치(밀물) 부표이동위치(썰물) 부표이동경로(밀물) 부표이동경로(썰물)	(제작)	전력연구원
		1999. 4. 20			부목표 2.6-41 부록표 2.6-42 부록그림 2.6-56 부목그림 2.6-56	부표이동위치(밀물) 부표이동위치(썰물) 부표이동경로(밀물) 부표이동경로(썰물)		

표 2.6-1 물리해양 현장조사 내용 총괄표(계속)

			관측	정점 위치 및 결과			비고
관측항목	관측기간	정점 수	위 치	측정	· 결과	관측기기 (조사기	(조사기관)
	1998. 7. 22 1998. 11. 3						
조 석	1999. 2. 4 ~ 2. 5	2개 정점	영광, 위도	부록표 2.6-43	조사기간 중 조석현황	TG-205	전력연구원
	1999. 4. 20 ~ 4. 21						
	1998. 7.			부록표 2.6-44	입도조성 강열감량 탄산염함량 금속원소합량		
혀	1998. 11.	. 10개 정점	早至「ロリん」	부록표 2.6-45	입도조성 강열감량 탄산염함량 금속원소함량	반-빈 채니기 mesh 전자로 원자흡광 광도계 (AAS)	전력연구원
양 저 질 조 사	1999. 2.			부록표 2.6-46	입도조성 강열감량 탄산염함량 금속원소함량		
	1999. 4.			부록표 2.6-47	입도조성 강열감량 탄산염함량 금속원소함량		
	1998	4개 지점	_	부록표 2.6-48	우리나라 주변 퇴적물의 금속원소 함량	원자흡광 광도계 (AAS)	전력연구원

표 2.6-1 물리해양 현장조사 내용 총괄표(계속)

			관측	관측정점 위치 및 결과		> -=- > >	비교
관측항목	관측기간	정점 수	위 치	측정결과		관측기기	(조사기관)
	1997. 1.			부록표 2.6-49	입도, 총탄소, 총질소, 총황 함량	Master sizer (Malvern 사)	
표층 해수		2174		부록표 2.6-49	금속원소 함량	원자흡광 광도계 (AAS)	한국
부유물 조사	부유물 21개	정점	부록그림 26-58	부록표 2.6-49	입도, 총탄소, 총질소, 총황 함량	Master sizer (Malvern 사)	해양 연구소
				부록표 2.6-49	금속원소 함량	원자흡광 광도계 (AAS)	
해저 수심조사	1999.	208 개 정점	배수구 기점 남북방향 20km 폭 5km	부록그림 2.6-59	해저수심도	초음파 수심측정기 GPS	조선대학교 원자력연구 센터

표 2.6-2 원전 주변 조사 시 사용된 주요 해양 물리 장비

장 비 명	제 작 사	모 델 명	용
Drogue	한국전력공사 전력연구원	Drifter	해류 경로 추적
S4 Current meter	미국 Interocean 사	S4	고정 정점에서의 연속적 해류 관류
CTD (Conductivity, Temperature, Depth)	미국 Sea Bird Electronics 사	SBE-19	수심별 수온 및 염분 측정
GPS (Global Positioning System)	미국 MCS 사	NAV DLX-10	위도 및 경도 관측
YSI water qualitymeter	미국 YSI 사	YSI6000	수온 및 염분관측

자료 : 영광원자력발전소 주변 일반환경 조사 및 평가 보고서, 한국전력공사 전력연구원, 1999.

다. 조사결과

1) 수 온

가) 수평분포

(1) 하 계

1998년 하계 조사 기간 중 부록그림 2.6-1의 23개 정점에서 밀물 시에 관측한 표층수온의 값은 부록표 2.6-1에 나타낸 바와 같으며, 표층수온의 분포는 부록그림 2.6-2와 같다. 썰물시에 관측한 표층수온의 값은 부록표 2.6-2에 나타낸 바와 같으며, 표층수온의 분포는 부록그림 2.6-3과 같다. 밀물 시는 온배수의 영향이 북향하는 조류의 영향으로 북쪽해역으로 확산되어 가고 썰물 시는 온배수의 영향이 바뀐 조류흐름을 따라 남동쪽해역으로 확산되어 가는 것을 알 수 있다.

(2) 추 계

1998년 추계 조사 기간 중 부록그림 2.6-4의 40개 정점에서 관측한 표층수온의 값은 부록표 2.6-3~4에 나타낸 바와 같으며, 표층수온의 분포는 부록그림 2.6-4~6과 같다. 밀물 시는 온배수의 영향이 북향하는 조류의 영향으로 썰물 시에 비해 북쪽해역으로의 확산이 우세하다. 또한 동호리 북쪽해역에 비해 백남리 남쪽해역이 0.5℃정도 높은 것으로 나타나는데이는 이 해역에 흐르는 왕복성 조류의 흐름이 온배수의 확산방향을 결정하는 중요한 요인임을 보여주고 있다.

(3) 동계

1998년 동계 조사 기간 중 부록그림 2.6-7의 23개 정점에서 판측한 표층수온의 값은 부록표 2.6-5~6에 나타낸 바와 같으며, 표층수온의 분포는 부록그림 2.6-8과 같다. 온배수의 주축이 밀물 시에 배수구를 중심으로 서쪽외해로 확산되어 가는 양상을 보이고, 썰물 시에는 배수구를 중심으로 남서쪽 외해로 확산되어 가는 양상을 보여주고 있다.

(4) 춘 계

1998년 춘계 조사 기간 중 부록그림 2.6-9의 23개 정점에서 관측한 표층수온의 값을 부록표 2.6-7~8에 나타냈으며, 이에 대한 표층수온의 분포는 부록그림 2.6-10과 같다. 춘계에는 연안에서 외해로 갈수록 수온이 감소하는 경향을 보여주고 있으며 배수구를 기준으로 남쪽에 위치한 정점에서 대체로 수온이 높았다.

나) 수직분포

(1) 하 계

1998년 하계 조사기간 중 온배수 주축이라 생각되는 5개 정점에서 수층별 수온을 밀물 시와 썰물 시에 관측하고 그 결과를 부록표 2.6-9~10과, 부록그림 2.6-11~13에 나타내었다. 부록그림 2.6-12를 보면 정점 2의 수심 2m의 상층과 정점 4를 제외한 모든 정점에서 25.0~

26.0℃ 사이의 일정한 수온 분포구조를 하고 있다. 온배수의 확산이 강한 조류흐름에 의해 이류와 활발한 수직적 혼합작용을 통해 발생하고 있음을 표층수온과 수층별 수온 분포구조 를 통해서 알 수 있다.

(2) 추 계

1998년 추계 조사기간 중 온배수 주축이라 생각되는 12개 정점의 수심별 수온을 썰물 시와 밀물 시에 관측하고 그 결과와 정점을 각각 부록표 2.6-11~12와 부록그림 2.6-14~16에 각각 나타내었다. 온배수의 확산 주축에 따른 수심별 조사에서 썰물 시에는 모든 정점에서 전 층에 대해 일정한 수온 분포 구조를 가지고 있다(부록그림 2.6-15). 밀물 시에는 썰물 시와 비슷한 수온 분포 구조를 하고 있으나 배수구에 인접한 정점 20에서는 인접한 다른 정점에 비해 약 8℃ 높은 수온이 나타났다(부록그림 2.6-16).

(3) 동 계

1999년 동계 조사기간 중 부록그림 2.6-17의 40개 정점 중 온배수 주축이라 생각되는 연안을 따른 직선상의 17개 정점에서 밀물 시와 썰물 시 2회 수심별 수온은 관측하고 그 결과를 부록표 2.6-13~14, 부록그림 2.6-18~19에 나타내었다. 대부분의 정점에서는 수심별로 균일한 수온구조를 보이고 있는데 이는 온배수의 이류과정에서 주변해수와의 수직·수평적혼합 및 희석으로 인해 그 영향이 감소하였기 때문이다.

(4) 춘 계

1999년 춘계 조사기간 중 부록그림 2.6-20의 40개 정점 중 온배수 주축이라 생각되는 연안을 따른 직선상의 17개 정점에서 밀물 시와 썰물 시 2회 수심별 수온을 관측하고 그 결과를 부록표 2.6-15~16, 부록그림 2.6-21~22에 나타내었다.

밀물 시의 연직 수온분포를 살펴보면 대부분의 정점에서 표층에서 수심 3m까지 수심이 깊어짐에 따라 2~3℃ 정도 수온이 감소하였다. 이는 온배수의 영향이라기 보다는 강한 태양복사열에 의한 표층수온의 상승에 기인한 결과이다. 배수구에 인접한 정점 20, 21, 23 25, 27에서는 온배수의 영향으로 표층과 저층 사이에 3~4℃ 정도 큰 폭의 온도차가 존재하였다.

썰물 시의 연직 수온분포는 창조 시의 분포와 큰 차이가 없었다.

2) 염 분

가) 수평분포

(1) 하 계

1998년 하계 조사기간 중 부록그림 2.6-23의 23개 정점에서 관측한 표층염분의 값은 부록표 2.6-17~18에 나타냈으며, 표층염분의 분포는 부록그림 2.6-24~25와 같다. 표층염분은 27.1~31.7% 범위로 약 4.6%의 공간적인 차이를 보였으며 배수구에서 외해로 가면서 염분이 낮아지는 분포를 보였다.

(2) 추 계

1998년 추계 조사기간 중 부록그림 2.6-26의 40개 정점에서 관측한 표층염분의 값은 부록표 2.6-19~20에 나타낸 바와 같으며, 표층염분의 분포는 부록그림 2.6-27~28과 같다. 관측된 표층염분은 29.7~31.0% 범위로 약 0.7%의 공간적인 차이를 보였다.

(3) 동계

1999년 동계 조사기간 중 부록그림 2.6-29의 40개 조사정점에서 표층염분을 조사하였으며 그 결과를 부록표 2.6-21~22와 부록그림 2.6-30에 나타내었다. 관측된 표층염분은 30.8~ 32.0%의 분포로 1.2%의 공간적인 차이를 보여, 공간에 따른 염분변화는 크지 않았다.

(4) 춘 계

1999년 춘계 조사기간 중 부록그림 2.6-31의 40개 조사정점에서 표층염분을 조사하였으며 그 결과를 부록표 2.6-23~24와 부록그림 2.6-32에 나타내었다. 관측된 표층염분은 30.6~ 32.5‰의 분포로 1.9‰의 공간적인 차이를 보였다.

나) 수직분포

(1) 하 계

1998년 하계 조사기간 중 부록그림 2.6-33의 5개 정점에서 관측한 수층별염분의 값은 부록표 2.6-25~26에 나타낸 바와 같으며, 수층별염분의 분포는 부록그림 2.6-34~35와 같다. 수층별 염분 분포는 30.5~31.9% 범위로 약 1.4%의 공간적인 차이를 보였다.

(2) 추 계

1998년 추계 조사기간 중 부록그림 2.6-36의 12개 정점에서 관측한 수층별 염분은 부록표 2.6-27~28과 부록그림 2.6-37~38에 제시된 바와 같다. 온배수의 확산 주축을 따른 조사결과 모든 정점에서 전 층에 대해 일정한 염분 분포 구조를 가지고 있었다.

(3) 동계

1998년 동계 조사기간 중 부록그림 2.6-39의 17개 정점에서 관측한 수층별 염분은 부록표 2.6-29~30과 부록그림 2.6-40~41에 제시된 바와 같다. 수층별 염분 분포는 30.5~31.9% 범위로 약 1.4%의 공간적인 차이를 보였다.

(4) 춘 계

1998년 춘계 조사기간 중 부록그림 2.6-1의 17개 정점에서 관측한 수층별 염분은 부록표 2.6-31~32와 부록그림 2.6-43~44에 제시된 바와 같다. 수층별 염분 분포는 30.5~31.9% 범위로 약 1.4%의 공간적인 차이를 보였다. 춘계의 연직 염분 변화의 가장 큰 특징은 수심별 염분 변화가 크지 않다는 점이다. 거의 모든 정점에서 연직방향 염분이 거의 균일한 염분구조를 갖고 있다.

3) 해수의 유동 특성

가) 연속측류 결과

(1) 하 계

1998년 하계 조사기간 중 부록그림 2.6-45의 정점 A에서 S4 유속계를 이용하여 표층 (2.5m) 해류를 연속측류 하였다(부록표 2.6-33). 부록그림 2.6-45의 정점 A에서 연속 관측한 표층 유동을 부록표 2.6-34에 제시하였다. 정점 A에서 연속 측류된 유동의 유속분포는 부록 그림 2.6-46과 같다. 연속측류 기간동안 최강 유속은 44cm/sec 였으며, 유향은 북향류가 우세하였다. 관측 기간동안 평균 유속은 31.2cm/sec로 북향하는 것으로 나타났다(부록그림 2.6-47~48).

(---

(2) 추 계

1998년 추계 조사기간 중 부록그림 2.6-49의 정점 A에서 S4 유속계를 이용하여 표층(5m) 해류를 연속측류 하였다(부록표 2.6-35). 부록그림 2.6-49의 정점 A에서 연속 관측한 표층 유동을 부록표 2.6-36에 제시하였다. 정점 A에서 연속 측류된 유동의 유속분포는 부록그림 2.6-50과 같다. 연속측류 기간동안 최강 유속은 92cm/sec 였으며, 유향은 북동-남서향가 우세하였다. 관측 기간동안 평균 유속은 32.1cm/sec로 남동-북서향 하는 것으로 나타났다(부록그림 2.6-51~52).

1999년 동계와 춘계 조사기간 중 연속측류 조사는 조사장비인 S4의 작동불량으로 인하여 신뢰할 수 있는 자료를 취득할 수 없었다.

나) 부표추적

(1) 하 계

1998년 하계 조사기간 중 부표 이동위치는 부록표 2.6-37~38와 같으며, 부록그림 2.6-5 3~54에서는 부표의 이동경로를 나타내고 있다. 밀물 시의 조사기간 동안에 부표는 북동쪽으로 이동하였으며, 34분 동안에 이동한 총 거리는 약 2km 정도였다. 이는 조석에 의한 영향보다는 바람에 의한 부표의 이동이 지배적임을 의미한다. 그리고 썰물 시에는 약 1시간동안에 총 이동한 거리는 약 0.5km 정도였다. 이때의 방향은 남서쪽이다.

(2) 추 계

이 기간동안은 조사당시 해상상태의 악화로 부표추적 조사 목적에 부합하는 자료를 구할 수 없었기에 조사를 실시하지 않았다.

(3) 동 계

1999년 동계 조사기간 중 부표 이동위치는 부록표 2.6-39~40과 같으며, 부록그림 2.6-55에서는 부표의 이동경로를 나타내고 있다. 밀물 시의 조사기간 동안에 부표는 북쪽방향의 조류흐름에 의해 북쪽으로 이동하였으며, 이동거리는 약 500m 정도였다. 썰물 시의 조사기

간 동안에 부표는 남쪽방향의 조류흐름에 의해 남쪽으로 이동하였으며, 이동거리는 약 700m 정도였다.

(4) 춘 계

1999년 춘계 조사기간 중 부표 이동위치는 부록표 2.6-41~42와 같으며, 부록그림 2.6-56에서는 부표의 이동경로를 나타내고 있다. 밀물 시의 조사기간 동안에 부표는 북쪽방향의 조류흐름에 의해 북쪽으로 이동하였으며, 이동거리는 약 700m 정도였다. 썰물 시의 조사기간 동안에 부표는 남쪽방향의 조류흐름에 의해 남쪽으로 이동하였으며, 이동거리는 약 300m 정도였다.

4) 조 석

영광해역의 고·저조위 값을 위도의 관측치와 비교한 결과를 부록표 2.6-43에 나타내었다.

라, 해저질 특성

1) 조사범위 및 시기

해양저질은 부록그림 2.6-57에서와 같이 발전소 주변해역에서 배수구를 중심으로 반경 8km 이내에 10개의 정점에서 Van-Veen Grab Sampler를 사용하여 시료를 채취하였다.

2) 조사 및 분석방법

시료는 반-빈 채니기(Van-Veen Grab Sampler)로 표충퇴적물을 채취한 후 표충 2~3 cm 깊이까지의 퇴적물을 폴리에틸렌병에 담아 실험실로 운반한 후, 화학분석을 위한 시료는 냉동건조기(Freeze Dryer)에 넣고 영하 40℃의 진공상태에서 시료가 완전히 건조할 때까지 말린 후, 아게이트 분마기를 이용하여, 아주 곱게 분마하였다. 입도분석은 현장에서 채취한 시료를 별다른 처리 없이 바로 이용하였다.

3) 분석결과

영광원자력발전소 주변 해역 표층퇴적물의 평균 입도는 동계의 경우 $1.2 \sim 7.6 \, \sigma$ 로 조사되었으며, 춘계의 경우 $2.6 \sim 9.2 \, \sigma$, 하계의 경우 $5.5 \sim 7.0 \, \sigma$, 추계 퇴적물의 평균입도는 $4.5 \sim 7.0 \, \sigma$ 로 나타났다(부록표 $2.6 \sim 44 \sim 47$).

조사지역의 퇴적물은 계절에 관계없이 세립한 퇴적물이 많이 분포해 있는 것으로 나타났다. 감열감량은 동계에 $0.9 \sim 5.9\%$ 로 세립한 퇴적물이 많이 존재하는 조사 지역의 특성을 고려해 볼 때 그다지 높지 않은 것으로 나타났다. 춘계의 경우 $2.0 \sim 19.5\%$, 하계의 경우 $3.0 \sim 6.6\%$, 추계의 경우 $1.8 \sim 7.9\%$ 로 세립한 퇴적물이 분포하는 정점에서 강열감량이 높게 나타 나는 일반적인 현상을 보이고 있다. 공간적인 분포는 퇴적물의 평균입도와 비슷하여 대체로 바다쪽으로 가면서 낮아지는 경향을 보이고 있다.

탄산염 함량은 동계에 0.9~2.6%, 춘계에는 1.2~5.3%, 하계에는 0.6~3.0%로 나타났으며 추계에는 0.0~2.4%로 조사되었으며 함량의 변화폭이 작아 특별한 경향성을 부여하기는 어렵다.

퇴적물 내 금속원소 함량의 변화는 대체로 작게 나타났으며 대부분 자연적인 배경 값 함량과 비슷한 수준으로 조사되었다(부록표 2.6-48)

조사지역에서 세립한 퇴적물이 존재하는 정점에서 금속원소의 함량이 높아, 대체적으로 세립한 퇴적물의 양에 의해 금속원소 함량이 지배되는 일반적인 경향성을 보이고 있다.

마. 표층해수부유물조사

동계, 하계 조사기간 중 21개 정점에서 저층 해수 중 화학원소들의 함량을 부록표 2.6-49에 제시하였으며, 시료채취 정점은 부록그림 2.6-58에 나타내었다. 겨울철 저해수층의 부유물질의 평균입자 크기는 $4.86\sim32.55~\mu$ m(평균, $13.96~\mu$ m)로 $5\sim8$ phi에 해당해 점토크기의 입자가 거의 없는 조립 실트에 해당하며, 여름철 저해수층의 부유물질의 입자크기는 $6.95\sim15.62~\mu$ m(평균, $9.93~\mu$ m), 즉 6.0(평균, $13.96~\mu$ m)8.5 phi로 주로 세립의 실트에 해당하고 겨울철에 비해 평균 $4.0~\mu$ m($20~\mu$ m)8.5 세립해졌다(부록표 2.6-49).

바, 해저 수심조사

영광원자력발전소의 배수구를 기점으로 남북방향 20km, 폭 5km 내의 해역에서 선정된 시료채취 정점에서 GPS를 이용하여 측정한 위도와 경도 및 초음파 수심측정장치를 이용하여 작 여 측정한 결과 각 정점별로 0~7m 범위의 값을 가지며, 이들 수심측정자료를 이용하여 작 성한 2차원 수심분포도는 부록그림 2.6-59와 같다. 또한 1997년 10월에 실시된 수평적 해저 면 탐사에 의하면, 취수구와 배수구 전면의 해저지형은 별다른 특징적인 양상을 보이지 않 고 있는데, 이러한 이유는 조사해역의 표층퇴적물이 대부분 세립질 퇴적물로 구성되어 있어 특징적인 해저면 형태가 발달하고 있지 않기 때문으로 사료된다.

2.6.2 해양확산

가. 해수유동 시뮬레이션

1) 해수유동모델

가) 기본방정식

해수유동모델은 기본적으로 POM(Princeton Ocean Model)을 사용하였다. POM은 Blumberg와 Mellor(1980)에 의해 개발된 3차원 해수유동모델로 지금까지 많은 연구자들이 하구와 연안해역에 적용하여 상당한 검증을 받은 모델이다. 모델의 기본방정식은 정수압 (hydrostatic) 가정과 Boussinesq 가정이 적용된 비압축성 유체의 연속방정식과 Navier-Stokes 방정식이다.

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \tag{2.6.1}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho_0} \frac{\partial p}{\partial x} + fv + \frac{\partial}{\partial z} (K_M \frac{\partial u}{\partial z}) + F_z$$
 (2.6.2)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{1}{\rho_0} \frac{\partial p}{\partial y} - fu + \frac{\partial}{\partial z} (K_M \frac{\partial v}{\partial z}) + F_y$$
 (2.6.3)

$$\rho g = -\frac{\partial p}{\partial z} \tag{2.6.4}$$

수온과 염분의 보존식은 다음과 같다.

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \frac{\partial}{\partial z} (K_H \frac{\partial T}{\partial z}) + F_T$$
(2.6.5)

$$\frac{\partial S}{\partial t} + u \frac{\partial S}{\partial x} + v \frac{\partial S}{\partial y} + w \frac{\partial S}{\partial z} = \frac{\partial}{\partial z} (K_H \frac{\partial S}{\partial z}) + F_S$$
 (2.6.6)

상기 식들에서 u,v,w: x,y,z 방향의 유속, T: 수온, S: 염분, ρ,ρ_0 : 밀도와 해수표면의 평균밀도, f: Coriolis parameter, p: 압력, g: 중력가속도, K_M : 수직난류점성계수, K_H : 수직난류 확산계수, F_x,F_y : x,y 성분의 수평난류혼합항, $F_{T,}F_S$: 수온과 염분의 수평난류확산항 등이다. 수평난류혼합 및 확산항은 다음의 식을 적용한다.

$$F_{x} = \frac{\partial}{\partial x} \left[2A_{M} \frac{\partial u}{\partial x} \right] + \frac{\partial}{\partial y} \left[A_{M} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right]$$
 (2.6.7)

$$F_{y} = \frac{\partial}{\partial y} \left[2A_{M} \frac{\partial v}{\partial y} \right] + \frac{\partial}{\partial x} \left[A_{M} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right]$$
 (2.6.8)

$$F_{T,S} = \frac{\partial}{\partial x} A_H \frac{\partial (T,S)}{\partial x} + \frac{\partial}{\partial y} A_H \frac{\partial (T,S)}{\partial y}$$
(2.6.9)

여기서 수평난류점성계수 A_M 과 확산계수 A_H 는 다음의 Smagorinsky(1963)의 식을 이용하여 계산함으로써 모델계산격자의 크기보다 작은 소규모의 난류현상에 대하여 각각 별도의 보다 작은 격자를 가지는 submodel로서 취급할 수 있게된다.

$$A_{M} = A_{H} = \left[C \Delta x \Delta y \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial v}{\partial y} \right)^{2} + \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^{2} \right]^{\frac{1}{2}} \right]$$
(2.6.10)

여기서 C는 0.1에서 0.3사이의 값을 가지는 상수이고 Δx , Δy 는 격자의 크기이다. 상기기본방정식을 풀기 위해서는 수직난류점성계수 K_M 과 확산계수 K_H 를 적절히 계수화하여 야 하는데 이를 위해 Mellor와 Yamada(1982)의 turbulence closure scheme을 적용하여 난류운동에너지와 난류특성길이의 보존식으로부터 구한다.

나) 경계조건

경계조건은 다음과 같다. 먼저 해수표면에서는

$$w = \frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial x} + v \frac{\partial \eta}{\partial y} \tag{2.6.11}$$

$$\rho_0 K_M(\frac{\partial u}{\partial z}, \frac{\partial v}{\partial z}) = (\tau_{0x}, \tau_{0y}) \tag{2.6.12}$$

여기서 η : 해수면 수위, τ_{0x} , τ_{0y} : x,y 방향의 바람응력 등이다. 해저면 경계에서는

$$w_b = -u_b \frac{\partial H}{\partial x} - v_b \frac{\partial H}{\partial y} \tag{2.6.13}$$

$$\rho_0 K_M(\frac{\partial u}{\partial z}, \frac{\partial v}{\partial z}) = (\tau_{bx}, \tau_{by}) \tag{2.6.14}$$

여기서 w_b : 해저면에서의 수직유속성분, H: 수심, au_{bx} , au_{by} : x,y 방향의 해저마찰응력 등이다. 육지와 해수의 경계에서는 u=v=w=0 이다. 외해(open boundary)경계에서는 다음과 같이 M_2 , S_2 분조의 조위변동을 주었다.

$$\eta = H_M \cos(\omega_M t - \phi_M) + H_S \cos(\omega_S t - \phi_S) \tag{2.6.15}$$

여기서 H_M, H_S , : M_2, S_2 분조의 진폭, ω_M, ω_S : M_2, S_2 분조의 각속도, ϕ_M, ϕ_S : M_2, S_2 분조의 위상차 등이다. 경계에서는 일정한 범위 내에서 자유롭게 해수유동을 허용하는 Sommerfeld 방사조건 (radiation condition)을 다음의 식과 같이 주었다.

$$\frac{\partial V}{\partial t} + C \frac{\partial V}{\partial n} = -\left[\frac{V - V_K}{T_f}\right] \tag{2.6.16}$$

여기서, *C*:중력파의 속도, *n*: 경계면에 수직한 방향성분이고 우변은 damping 항을 나타낸다. 처음에 유동이 전혀 없는 상태에서 시작하여 외해경계에서 조류를 주어 유동을 일으키고 거의 정상상태로 되었을 때 다시 바람장을 주어 정상상태가 될 때까지 계산하여 결과를 출력하였다.

2) 해수유동 시뮬레이션 결과

가) 계산격자망

영광원전 지역의 해수유동 시뮬레이션을 위하여, 격자체계를 구축하였다. 영광원전을 중심으로 하여, 연안을 따라 남북으로 160km로 각각 구성하였으며, 원역으로 65km에 이르는 지점까지를 격자 경계로 하였다(그림 2.6-2). 본 격자망 구성에는 Cartesian Coordinate를 적용하였다. 격자간 간격은 영광원전을 중심으로 반경 4km지점까지 100m (Δx=Δy)의 정방격자로 구성되었으며, 이후 경계면까지는 200 - 2km 범위의 가변격자를 적용하였다. 격자수는 동서방향으로 70개, 남북방향으로 128 개, 수직방향으로 6개로 총 53,760개이다.

수심자료는 해도의 수심(자료 출처: 국립해양조사원)을 기본으로 하였다. 모델계산영역에서의 수심은 최대가 50m 정도이며 등심선은 주로 연안을 따라 형성되어있다(그림 2.6-3). 모델에서는 수직적으로 6개의 층으로 구분하였으며, 수심에 따라 등비율이 되는 σ 좌표계를 채택하였다.

나) 입력자료 및 모델의 수행

초기 수온 및 염분분포는 국립수산진홍원 산하 한국해양자료센터의 서해 정선해양관측자료 (308, 309, 310, 311 Line) 중 1990년에서 1999년까지의 10년평균 자료를 기본으로 하여 각 계절별 평균해황을 도출, 각 격자점에 주었다. 자료가 있는 격자점의 값을 중심으로 내삽법을 이용해 다른 격자점의 값을 주는 방법을 이용했다.

개방경계에서의 조석상수는 국립해양조사원의 조화상수자료 중 계산영역에 포함된 자료들을 (표 2.6-3) 내삽법에 의해 채택하였다.

바람자료는 나정열 등의 월간 한국해양해상풍자료를 이용하여 각 계절별 평균바람장을 입력하여 시뮬레이션을 하였다. 구체적으로 춘계에는 북서풍 4m/sec, 하계에는 남남동풍 12m/sec, 추계에는 북북동풍 11m/sec, 동계에는 북북서풍 13m/sec으로 시뮬레이션을 하였다.

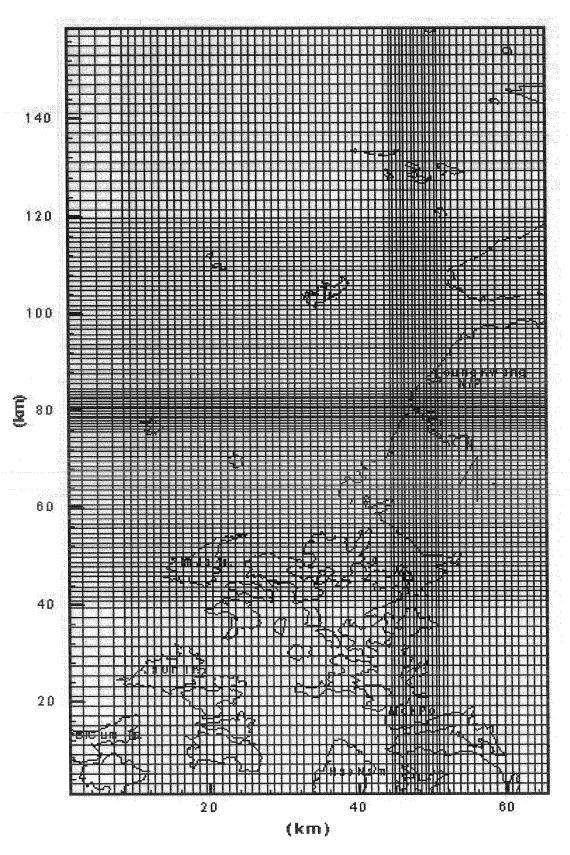
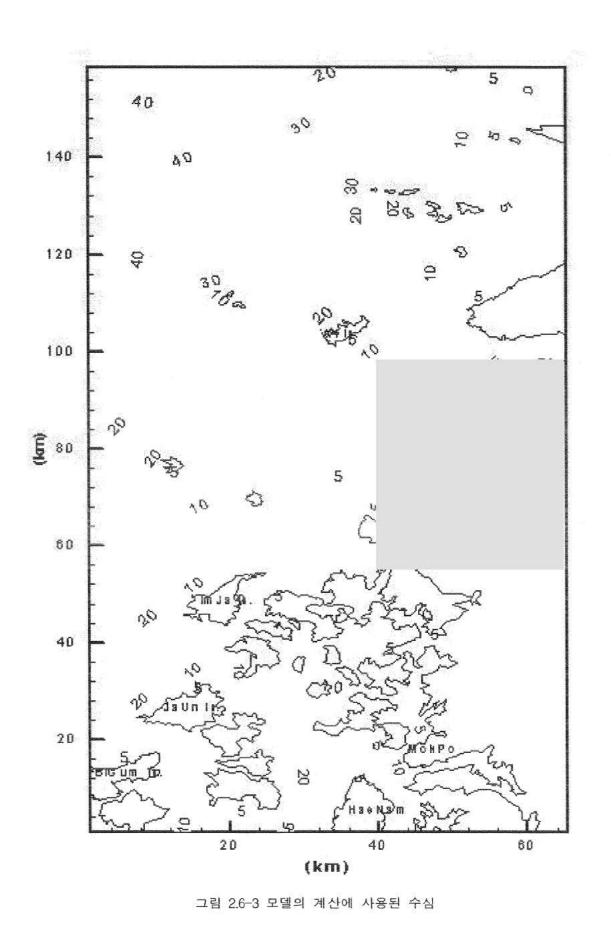



그림 2.6-2 모델의 계산영역과 격자

2 – 132

2-133 본 문서는 한국수력원자력(주)이 정보 공개용으로 작성한 문서입니다.

표 2.6-3 개방경계조건 산출에 사용된 조석조화상수

Locality and	Latitude	M_2 Amplitude (cm)	S ₂ Amplitude(cm)
Position	Longitude	M ₂ Phase(cm)	S ₂ Phase(cm)
C	35. 49. N	204	70
Gogunsan I.	126. 24. E	75	117
Wi I.	35. 37. N	199.7	72.6
VV 1 1.	126. 18. E	68	118
A T	35. 21. N	164.7	60.9
Anma I.	126。01、E	53	100
II	35。09、N	187	61
Hampyung Bay	126。21、E	57	98
I Y	35。03、N	142	59
Imza I.	126。05、E	45	81
Zaeun I.	34。51、N	145.1	50.9
zaeun 1.	126。05、E	34	72
N. 6	34. 53. N	128	39
Mongtan	126。32、E	90	142
Malma	34. 47. N	122.6	36.7
Mokpo	126。23、E	60	108
Cil. T	34。42、N	129.2	45
Siha I.	126。15、E	29	75
Pinoum W. C	34。43、N	124	42
Bigeum W. C.	125。56、E	20	56
Docho I.	34。43、N	123.6	40.7
DOCHO I.	125。56、E	24	52

시뮬레이션은 춘, 하, 추, 동 각 계절별로 대조기와 소조기로 나누어 각각의 평균유동을 구하는 것으로 하였다. 평균유동을 구하기 위해 대조기와 소조기 별로 모델의 수행기간을 5일로 하여 계산결과를 평균하였다. POM 모델에서는 수심평균한 2차원변수들을 구하는 external mode와 3차원 변수들을 계산하는internal mode로 나누어져 있고 각각의 mode에 따라 계산시간 간격을 달리 주는데 본 시뮬레이션에서는 각 mode의 수치계산 안정조건을 만족시키기 위해 external mode의 경우 10초, internal mode의 경우 300초마다 계산되도록하였다. 표 2.6-4에 시뮬레이션의 입력조건을 정리하였다.

표 2.6-4 모델의 계산조건

변 수	입력 값
계산영역	영광원전 중심 연안따라 160km, 원역 65km
계산격자수	70(offshore) × 128(onshore) × 6(vertical)
계산시간간격(Δt)	external mode(2차원계산) : 10초 internal mode(3차원계산) : 300초
계산시간	5일
초기수온, 염분	한국해양자료센터의 서해정선관측자료(4개 Line) 중 1990-1999년의 10년 자료 계절평균 값을 내삽 사용
바람	봄: 북서풍 4m/sec 여름: 남남동풍 12m/sec 가을: 북북동풍 11m/sec 겨울: 북북서풍 13m/sec
초기수평점성계수 (horizontal kinematic viscosity)	500 m ² /sec
초기수평확산계수 (horizontal diffusivity)	500 m ² /sec
초기수직점성계수 (vertical kinematic viscosity)	$2 \times 10^{-4} \text{m}^2/\text{sec}$
초기수직확산계수 (vertical diffusivity)	$2 \times 10^{-4} \text{m}^2/\text{sec}$
경계조석	표 2.6-3의 자료로서 개방경계에서 내삽법으로 설정

다) 모델계산결과

해수유동은 춘계, 하계, 추계, 동계의 계절별로 대조기, 소조기의 평균유동으로 시뮬레이션 하였다. 계산결과는 각각 표층과 저층의 유동장을 제시하였다.

(1) 춘계

춘계에는 서풍의 출현빈도가 가장 높고, 북서방향의 최대풍속이 나타나기 때문에 모델에서는 북서풍이 4m/sec로 지속적으로 부는 것으로 모의하였다. 부록그림 2.6-60에서 부록그림 2.6-63까지 대조, 소조시 표층과 저층의 평균유속분포를 제시하였다. 제시된 분포를 보면연안을 따라 남하하는 흐름의 양상을 보이는데 이는 남서방향의 낙조류가 북동방향의 창조류보다 유속이 세고 지속시간이 길고, 북서풍의 바람의 영향을 받기 때문이다. 표층은 영광원전 부근해역에서 5-15 cm/sec, 저층에서는 2-5 cm/sec 정도로 저층보다는 표층의 흐름이더 센데 이는 바람의 영향이 표층에 많이 나타나기 때문이다. 표층흐름은 대조기가 소조기의 평균흐름보다 약간 더 세며 저층의 흐름은 대조기와 소조기가 비슷하다.

(2) 하계

하계에는 남동에서 남서방향의 바람이 불고 남남동방향의 최대풍속이 나타나므로 모델에서는 12m/sec의 남남동풍을 모의하였다. 부록그림 2.6-64에서 부록그림 2.6-67까지 대조와소조시 표층과 저층의 유속분포를 나타내었다. 춘계와 비교하면 조류에 의한 평균흐름과 바람에 의한 풍성류가 거의 반대방향을 나타내어 흐름은 상당히 미약한 편이다. 소조시의 경우 표층보다 저층의 흐름이 더 세계 나타나고 있는데 이는 표층의 경우 조류의 흐름이 대조시보다 약한 관계로 반대방향의 풍성류에 의해 상쇄되는 효과가 크기 때문이다.

(3) 추계

추계에는 북에서 북동의 바람이 불어 11m/sec의 북북동풍으로 시뮬레이션을 하였다. 부록그림 2.6-68에서 부록그림 2.6-71까지 대조평균, 소조평균의 표층, 저층의 유속분포를 표시하였다. 해수유동은 북북동풍의 바람방향과 조류평균의 유향과 일치하여 영광원전 부근에서는 비교적 강한 5-20 cm/sec의 흐름을 보인다.

(4) 동계

동계에는 주로 북에서 북서풍이 지배적이며 풍속 또한 강하여 북북서풍 13 m/sec로서 시뮬레이션을 하였다. 부록그림 2.6-72에서 부록그림 2.6-75까지 유속분포를 제시하였다. 대조시 표층의 평균유속 분포는 춘, 추계와 마찬가지로 남서의 낙조류가 우세한 관계로 남서방향 흐름이 바람의 영향과 합하여 비교적 강하게 나타나며 저층의 평균흐름은 4계절 중 가장강하게 나타나고 있어 바람의 영향이 저층까지 전달되고 있음을 보여준다.

나. 방사성물질 해양확산 시뮬레이션

1) 해양에서의 방사성물질의 형태 및 거동특성

해양으로 유입된 방사성 물질은 용해상태의 경우는 이온상태로 혹은 해수중의 미량성분과 결합하여 해수유동에 의한 이류와 난류확산과정을 통해 이동, 확산된다. 흡착성이 강한 방사 성 물질은 부유물 혹은 유기물 등에 흡착되어 이동되다가 침전이 된다. 방사성 물질의 해양 확산 평가 모델을 수립하려면 방사성 물질의 해양에서의 이러한 거동 특성들을 자세히 파악 한 후 이들 특성들이 잘 반영이 되는 확산식을 구축하여야 한다. 방사성 물질의 해양에서 의 일반적인 거동 특성은 다음과 같다.

가) 용해상태

해양으로 방출된 방사성 물질 중 유리 이온상태이거나 무기 혹은 유기화합물의 상태의 용해상태인 경우는 주변해수의 유동에 의한 이류와 난류확산의 물리적 과정에 의해 이동, 확산이 된다. 이 상태는 흡착과 붕괴 등의 과정이 일어나기 전 단계로 다른 오염물질의 일반적 확산식과 같은 식을 사용하게 된다.

나) 흡착상태

방사성 물질 중 삼중수소와 불활성기체를 제외한 물질들은 해수중의 부유물이나 유기물에 흡착하는 성질을 지니고 있어 흡착후의 입자크기에 따라 유동하거나 해저로 침전이 된다. 침전과정은 부유물의 입도에 따라 크게 좌우된다. 보통 1nm ~ 1µm는 콜로이드입자로 분류되며 중력의 영향이 거의 미치지 않기 때문에 침전은 되지 않고 계속 유동이 된다. 10µm ~ 200µm 의 입도를 가지는 입자는 침강입자로 분류되며 침전속도는 입자의 직경에 비례한다. 해저에 침전된 입자들도 해수의 shear velocity에 의해 재부유하기도 한다. 방사성 물질의 용해성과 흡착정도는 분배계수를 이용하여 나타낸다. 분배계수는 방사성 물질의 용해성과 흡착성의 비율로 정의된다. 분배계수가 크면 클수록 흡착성은 더욱 커진다.

과기부고시 98-10호에 의하면 방출되는 방사성핵종의 흡착, 침전 등을 고려하여 해양확산을 평가토록 요구하고 있다. 국내원전에서 방출되거나 방출될 가능성 있는 방사성물질은 표 2.6-5와 같이 다양하게 존재하지만 가동중인 모든 원전의 방출량 및 선량기여도를 보면 삼중수소가 거의 100%를 차지하고 있다. 따라서, 방출량 및 선량기여도 측면을 고려할 때 삼중수소를 제외한 입자성물질에 대한 흡착 및 침전에 의한 해수중 농도의 변화량은 매우미하다고 볼 수 있다.

표 2.6-5 환경문제를 유발할 수 있는 원전기원 핵종

핵종	반감기	생성 구분	화학 특성	비고
Tritium	12.3 yr	neutron activation	기체 및 액체 입차 흡착 없음	중수로에서 많이 유출
Strontium-89 Strontium-90	50.5 day 28 yr	1차분열산물	친생물원소 입차 흡착 미약	사고시에만 유출 인체 유해
Cesium-137	30 yr	1차분열산물	친생물원소 입차 흡착 미약	체르노빌 원전 사고 주 핵종
Cobalt-57 Cobalt-60	271 day 5.3 yr	neutron activation	친생물원소	노후한 로에서 배출
Plutonium-238 Plutonium-239 Plutonium-240	86.4 yr 2.4x10 ⁴ yr 6580 yr	neutron activation	입차 흡착 강력	사고 때만 유출
Uranium-238	4.5x10 ⁹ yr	neutron activation	입차 흡착 미약	사고 때만 유출 해수의 바탕 농도 높음
Cerium-141	33 day	1차분열산물	알려지지 않았음	
Iodine-131	8.1 day	1차분열산물	친생물원소	반감기 짧음
Krypton-85	10.8 yr	1차분열산물	기체	기체상
Zinc-65	244 day	neutron activation	친생물원소	
Iron-59	45.1 day	neutron activation	친생물원소	

2) 방사성물질 해양확산 모델

이들 특성을 반영하여 방사성물질의 해양확산식을 나타내면 다음과 같다.

$$\frac{\partial c_{w}}{\partial t} + \frac{\partial}{\partial x}(uc_{w}) + \frac{\partial}{\partial x}(vc_{w}) + \frac{\partial}{\partial x}(wc_{w})$$

$$= \frac{\partial}{\partial x}(\varepsilon_{x}\frac{\partial c_{w}}{\partial x}) + \frac{\partial}{\partial x}(\varepsilon_{x}\frac{\partial c_{w}}{\partial x}) + \frac{\partial}{\partial x}(\varepsilon_{x}\frac{\partial c_{w}}{\partial x})$$

$$- \sum_{i}\nu_{i}c_{i}(F_{i}c_{w}) - Nc_{w} + S_{w}$$
(2.6.17)

여기서, u, v, w = x.y,z 성분의 유속

 c_w = 용해상태의 방사성 물질의 농도,

 c_i = i성분의 방사성 입자의 농도

 ε_x , ε_y , ε_z = x,y,z 성분의 난류확산계수

 u_i = i성분의 방사성 입자의 단위시간당 단위질량당 흡착계수 (단위는 $\mathrm{m}^3/(\mathrm{kg}\ \mathrm{sec}))$

 F_i = i 성분 방사성 입자의 분배계수

N = 붕괴상수

 S_w = source 항(배출구에서의 input 과 해저에서의 resuspension 포함)

본 보고서에서는 이전에 수행한 영광원전 해역의 방사성물질 기초조사의 결과를 토대로 이 해역에 맞는 방사성물질 해양확산식의 흡착계수와 분배계수, source항 등을 도출하고 이를 유한차분시킨 모델을 구축하여 시뮬레이션 하였다.

3) 방사성물질 해양확산 시뮬레이션 결과

가) 정상상태에서의 해양확산

정상 가동시 방출되는 방사성물질의 해양확산을 시뮬레이션 하기 위해 삼중수소, Cs, Co 등 세가지 핵종에 대해 가. 에서 행한 해수유동의 결과를 입력자료로 하여 시뮬레이션을 하였다. 본 보고서에는 삼중수소에 대한 결과만 수록하였는데, 이는 Cs과 Co 등과 같이 입자성물질의 경우 흡착 및 침전에 의한 변화가 매우 적어 삼중수소와 같은 용해성 입자의 해양확산 시뮬레이션 결과와 크게 다르지 않은 결과를 보여주고 있기 때문이다.

시뮬레이션은 해수유동의 경우와 마찬가지로 춘, 하, 추, 동 각 계절별로 대조기, 소조기 각 경우에 5일간 행하였다. 해양확산도는 춘, 하, 추, 동 각 계절별로 대조기, 소조기 평균확산 양상을 광역에 표시하였다. source는 영광원전에서 단위량이 방출되는 것으로 하고 10^{-1} 에서 10^{-10} 까지 10^{-1} 단계로 농도를 표시하였다. 표 2.6-6에 영광원전을 중심으로

남, 북으로 연안에서 4km 떨어진 곳에서의 거리별 희석인자를 구하여 제시하였다. 표 2.6-7에는 주요지점까지 이동시간을 나타내었다.

표 2.6-6 거리별 희석인자

-1-1	(3)	Ę	<u> </u>	여	르	가	<u>수</u> 문	겨	울	어퍼그
기섬	(km)	대조	소조	대조	소조	대조	소조	대조	소조	연평균
	80	0.337E+12	0.901E+11	0.150E+11	0.926E+09	0.145E+17	0.348E+18	0.251E+20	0.935E+15	0.689E+10
	78	0.397E+12	0.943E+11	0.182E+11	0.990E+09	0.166E+17	0.324E+18	0.166E+16	0.901E+15	0.742E+10
	76	0.305E+12	0.847E+11	0.145E+11	0.901E+09	0.144E+17	0.251E+18	0.457E+15	0.719E+15	0.670E+10
	74	0.164E+12	0.599E+11	0.781E+10	0.654E+09	0.800E+16	0.136E+18	0.126E+15	0.444E+15	0.476E+10
	72	0.725E+11	0.337E+11	0.336E+10	0.392E+09	0.253E+16	0.549E+17	0.373E+14	0.221E+15	0.277E+10
	70	0.299E+11	0.168E+11	0.139E+10	0.212E+09	0.654E+15	0.200E+17	0.125E+14	0.100E+15	0.145E+10
as Assessment of the Control of the	68	0.132E+11	0.847E+10	0.625E+09	0.115E+09	0.186E+15	0.763E+16	0.455E+13	0.467E+14	0.763E+09
The state of the s	66	0.621E+10	0.448E+10	0.308E+09	0.637E+08	0.595E+14	0.307E+16	0.181E+13	0.230E+14	0.414E+09
multiproduct conference of the	64	0.306E+10	0.245E+10	0.159E+09	0.353E+08	0.205E+14	0.125E+16	0.775E+12	0.117E+14	0.226E+09
북	62	0.172E+10	0.151E+10	0.917E+08	-0.218E+08	0.855E+13	0.578E+15	0.373E+12	0.662E+13	0.138E+09
	60	0.104E+10	0.102E+10	0.568E+08	0.145E+08	0.395E+13	0.282E+15	0.189E+12	0.405E+13	0.904E+08
	58	0.595E+09	0.645E+09	0.339E+08	0.909E+07	0.171E+13	0.126E+15	0.980E+11	0.226E+13	0.560E+08
	56	0.341E+09	0.410E+09	0.205E+08	0.578E+07	0.763E+12	0.592E+14	0.503E+11	0.129E+13	0.352E+08
	54	0.284E+09	0.322E+09	0.174E+08	0.455E+07	0.617E+12	0.459E+14	0.431E+11	0.100E+13	0.282E+08
	52	0.206E+09	0.207E+09	0.129E+08	0.292E+07	0.429E+12	0.249E+14	0.238E+11	0.610E+12	0.186E+08
	50	0.103E+09	0.105E+09	0.645E+07	0.148E+07	0.160E+12	0.763E+13	0.156E+11	0.258E+12	0.941E+07
	48	0.610E+08	0.699E+08	0.383E+07	0.990E+06	0.741E+11	0.377E+13	0.101E+11	0.152E+12	0.614E+07
	46	0.386E+08	0.478E+08	0.246E+07	0.680E+06	0.373E+11	0.200E+13	0.671E+10	0.926E+11	0.416E+07
A	44	0.258E+08	0.312E+08	0.166E+07	0.448E+06	0.208E+11	0.105E+13	0.455E+10	0.549E+11	0.275E+07
	42	0.175E+08	0.198E+08	0.112E+07	0.287E+06	0.122E+11	0.552E+12	0.325E+10	0.324E+11	0.178E+07

표 2.6-6 거리별 희석인자(계속)

7] 7-]	(1)	<u>1</u>	<u></u>	여	름	가	을		울	al m 7
시심	(km)	대조	소조	대조	소조	대조	소조	대조	소조	연평균
	40	0.115E+08	0.123E+08	0.730E+06	0.179E+06	0.719E+10	0.292E+12	0.212E+10	0.188E+11	0.112E+07
Alaborate Professional Control of the Control of th	38	0.704E+07	0.741E+07	0.446E+06	0.109E+06	0.402E+10	0.152E+12	0.122E+10	0.106E+11	0.684E+06
	37	0.410E+07	0.442E+07	0.260E+06	0.667E+05	0.213E+10	0.787E+11	0.645E+09	0.599E+10	0.414E+06
	36	0.232E+07	0.263E+07	0.149E+06	0.408E+05	0.109E+10	0.407E+11	0.324E+09	0.337E+10	0.250E+06
	35	0.128E+07	0.154E+07	0.840E+05	0.250E+05	0.535E+09	0.205E+11	0.160E+09	0.183E+10	0.150E+06
	34	0.704E+06	0.893E+06	0.481E+05	0.155E+05	0.260E+09	0.101E+11	0.800E+08	0.971E+09	0.910E+05
	33	0.389E+06	0.518E+06	0.281E+05	0.962E+04	0.125E+09	0.485E+10	0.398E+08	0.503E+09	0.555E+05
na kio kambao in dopa di wasa pipe pipe	32	0.220E+06	0.301E+06	0.168E+05	0.610E+04	0.606E+08	0.230E+10	0.205E+08	0.256E+09	0.346E+05
	31	0.123E+06	0.170E+06	0.101E+05	0.382E+04	0.285E+08	0.102E+10	0.108E+08	0.121E+09	0.213E+05
북	30	0.709E+05	0.971E+05	0.637E+04	0.246E+04	0.139E+08	0.450E+09	0.578E+07	0.575E+08	0.136E+05
	29	0.424E+05	0.575E+05	0.413E+04	0.164E+04	0.694E+07	0.202E+09	0.304E+07	0.275E+08	0.895E+04
	28	0.279E+05	0.366E+05	0.293E+04	0.118E+04	0.386E+07	0.990E+08	0.169E+07	0.143E+08	0.639E+04
	27	0.204E+05	0.263E+05	0.229E+04	0.935E+03	0.249E+07	0.578E+08	0.108E+07	0.870E+07	0.502E+04
	26	0.172E+05	0.219E+05	0.200E+04	0.826E+03	0.196E+07	0.420E+08	0.826E+06	0.649E+07	0.440E+04
	25	0.156E+05	0.197E+05	0.188E+04	0.775E+03	0.171E+07	0.350E+08	0.787E+06	0.543E+07	0.413E+04
	24	0.144E+05	0.176E+05	0.177E+04	0.719E+03	0.150E+07	0.286E+08	0.671E+06	0.452E+07	0.384E+04
Annalis and Annali	23	0.127E+05	0.151E+05	0.161E+04	0.654E+03	0.124E+07	0.210E+08	0.541E+06	0.346E+07	0.348E+04
	22	0.109E+05	0.126E+05	0.143E+04	0.578E+03	0.100E+07	0.146E+08	0.405E+06	0.255E+07	0.307E+04
	21	0.870E+04	0.971E+04	0.120E+04	0.478E+03	0.704E+06	0.840E+07	0.215E+06	0.161E+07	0.254E+04

표 2.6-6 거리별 희석인자(계속)

7) 7).	(1rm-)	<u></u>	1	여.	2	가·	<u>5</u>	겨	울	연평균
지점	(KIN)	대조	소조	대조	소조	대조	소조	대조	소조	
	20	0.658E+04	0.704E+04	0.962E+03	0.382E+03	0.431E+06	0.417E+07	0.112E+06	0.909E+06	0.202E+04
	19	0.478E+04	0.508E+04	0.763E+03	0.310E+03	0.250E+06	0.210E+07	0.709E+05	0.510E+06	0.161E+04
	18	0.341E+04	0.368E+04	0.588E+03	0.253E+03	0.144E+06	0.107E+07	0.474E+05	0.286E+06	0.128E+04
	17	0.242E+04	0.258E+04	0.452E+03	0.203E+03	0.820E+05	0.521E+06	0.336E+05	0.153E+06	0.100E+04
	16	0.177E+04	0.181E+04	0.360E+03	0.164E+03	0.481E+05	0.243E+06	0.226E+05	0.806E+05	0.794E+03
	15	0.131E+04	0.128E+04	0.290E+03	0.133E+03	0.279E+05	0.113E+06	0.140E+05	0.420E+05	0.632E+03
	14	0.952E+03	0.901E+03	0.231E+03	0.109E+03	0.157E+05	0.521E+05	0.813E+04	0.217E+05	0.503E+03
	13	0.680E+03	0.637E+03	0.183E+03	0.901E+02	0.862E+04	0.242E+05	0.461E+04	0.112E+05	0.399E+03
	12	0.485E+03	0.441E+03	0.144E+03	0.735E+02	0.474E+04	0.111E+05	0.256E+04	0.568E+04	0.311E+03
	11	0.341E+03	0.300E+03	0.113E+03	0.592E+02	0.257E+04	0.505E+04	0.143E+04	0.282E+04	0.238E+03
	10	0.239E+03	0.202E+03	0.885E+02	0.472E+02	0.141E+04	0.234E+04	0.813E+03	0.142E+04	0.179E+03
부	9	0.166E+03	0.138E+03	0.685E+02	0.377E+02	0.781E+03	0.113E+04	0.472E+03	0.730E+03	0.133E+03
	8	0.116E+03	0.962E+02	0.532E+02	0.308E+02	0.444E+03	0.581E+03	0.282E+03	0.398E+03	0.996E+02
	7	0.833E+02	0.690E+02	0.418E+02	0.254E+02	0.270E+03	0.325E+03	0.178E+03	0.233E+03	0.751E+02
	6	0.629E+02	0.508E+02	0.340E+02	0.211E+02	0.178E+03	0.197E+03	0.120E+03	0.147E+03	0.579E+02
	-5	0.493E+02	0.389E+02	0.283E+02	0.178E+02	0.125E+03	0.129E+03	0.870E+02	0.990E+02	0.458E+02
	4	0.400E+02	0.309E+02	0.241E+02	0.153E+02	0.926E+02	0.901E+02	0.658E+02	0.714E+02	0.372E+02
	3.5	0.334E+02	0.251E+02	0.211E+02	0.134E+02	0.714E+02	0.654E+02	0.513E+02	0.532E+02	0.308E+02
	3	0.279E+02	0.205E+02	0.183E+02	0.117E+02	0.556E+02	0.481E+02	0.392E+02	0.403E+02	0.255E+02
	2.5	0.231E+02	0.168E+02	0.158E+02	0.102E+02	0.429E+02	0.356E+02	0.299E+02	0.306E+02	0.210E+02
	2	0.185E+02	0.141E+02	0.131E+02	0.926E+01	0.319E+02	0.270E+02	0.224E+02	0.238E+02	0.172E+02
	1.5	0.151E+02	0.124E+02	0.112E+02	0.917E+01	0.244E+02	0.215E+02	0.175E+02	0.195E+02	0.146E+02
	1	0.132E+02	0.115E+02	0.103E+02	0.970E+01	0.198E+02	0.124E+02	0.124E+02	0.130E+02	0.121E+02
	0.56	0.121E+02	0.109E+02	0.980E+01	0.970E+01	0.169E+02	0.126E+02	0.123E+02	0.135E+02	0.117E+02

표 2.6-6 거리별 희석인자(계속)

	(*)	1	4	. वे	름	가	읔		울	
지섬	(km)	대조	소조	대조	 소조	대조	 소조	대조	소조	연평균
	0.56	0.108E+02	0.106E+02	0.935E+01	0.987E+01	0.135E+02	0.154E+02	0.120E+02	0.135E+02	0.114E+02
	1	0.111E+02	0.106E+02	0.990E+01	0.992E+01	0.136E+02	0.153E+02	0.123E+02	0.134E+02	0.117E+02
	1.5	0.117E+02	0.105E+02	0.104E+02	0.991E+01	0.142E+02	0.151E+02	0.124E+02	0.131E+02	0.119E+02
	2	0.118E+02	0.104E+02	0.105E+02	0.100E+02	0.143E+02	0.158E+02	0.126E+02	0.139E+02	0.121E+02
	2.5	0.117E+02	0.104E+02	0.105E+02	0.104E+02	0.142E+02	0.156E+02	0.128E+02	0.137E+02	0.121E+02
	3	0.118E+02	0.104E+02	0.107E+02	0.107E+02	0.142E+02	0.153E+02	0.135E+02	0.135E+02	0.123E+02
	3.5	0.121E+02	0.105E+02	0.110E+02	0.113E+02	0.147E+02	0.160E+02	0.137E+02	0.139E+02	0.126E+02
	4	0.125E+02	0.107E+02	0.115E+02	0.121E+02	0.151E+02	0.169E+02	0.139E+02	0.139E+02	0.131E+02
	5	0.115E+02	0.101E+02	0.108E+02	0.112E+02	0.134E+02	0.164E+02	0.142E+02	0.141E+02	0.124E+02
	6	0.122E+02	0.104E+02	0.115E+02	0.120E+02	0.139E+02	0.164E+02	0.148E+02	0.144E+02	0.129E+02
	7	0.132E+02	0.108E+02	0.124E+02	0.130E+02	0.149E+02	0.166E+02	0.150E+02	0.147E+02	0.136E+02
남	8	0.137E+02	0.108E+02	0.132E+02	0.141E+02	0.153E+02	0.164E+02	0.155E+02	0.145E+02	0.140E+02
A STATE OF THE STA	9	0.135E+02	0.110E+02	0.133E+02	0.155E+02	0.147E+02	0.161E+02	0.150E+02	0.144E+02	0.140E+02
andandes vancenamente	10	0.142E+02	0.125E+02	0.145E+02	0.196E+02	0.151E+02	0.167E+02	0.158E+02	0.144E+02	0.151E+02
	11	0.160E+02	0.143E+02	0.173E+02	0.259E+02	0.167E+02	0.171E+02	0.175E+02	0.148E+02	0.170E+02
	12	0.161E+02	0.138E+02	0.176E+02	0.259E+02	0.168E+02	0.179E+02	0.173E+02	0.143E+02	0.169E+02
THE PARTY AND TH	13	0.169E+02	0.153E+02	0.200E+02	0.334E+02	0.175E+02	0.170E+02	0.178E+02	0.153E+02	0.181E+02
	14	0.227E+02	0.225E+02	0.292E+02	0.617E+02	0.209E+02	0.179E+02	0.230E+02	0.201E+02	0.238E+02
	15	0.240E+02	0.279E+02	0.300E+02	0.763E+02	0.211E+02	0.198E+02	0.246E+02	0.238E+02	0.263E+02
	16	0.208E+02	0.188E+02	0.267E+02	0.515E+02	0.207E+02	0.175E+02	0.212E+02	0.179E+02	0.218E+02
	17	0.242E+02	0.211E+02	0.333E+02	0.676E+02	0.231E+02	0.189E+02	0.241E+02	0.194E+02	0.248E+02
	18	0.298E+02	0.231E+02	0.515E+02	0.104E+03	0.267E+02	0.191E+02	0.279E+02	0.197E+02	0.283E+02
	19	0.442E+02	0.383E+02	0.124E+03	0.427E+03	0.292E+02	0.209E+02	0.297E+02	0.214E+02	0.361E+02
L	20	0.800E+02	0.794E+02	0.241E+03	0.102E+04	0.439E+02	0.322E+02	0.455E+02	0.334E+02	0.588E+02

표 2.6-6 거리별 희석인자(계속)

-1 -1	(1)	- Ł	<u> </u>	여	름		을	겨·	울	어쩌고
지점((km)	대조	소조	대조	소조	대조	소조	대조	소조	연평균
	21	0.102E+03	0.103E+03	0.317E+03	0.145E+04	0.535E+02	0.369E+02	0.552E+02	0.383E+02	0.706E+02
	22	0.111E+03	0.120E+03	0.346E+03	0.181E+04	0.562E+02	0.398E+02	0.585E+02	0.415E+02	0.763E+02
-	23	0.106E+03	0.129E+03	0.330E+03	0.196E+04	0.532E+02	0.410E+02	0.559E+02	0.433E+02	0.763E+02
	24	0.115E+03	0.153E+03	0.358E+03	0.240E+04	0.575E+02	0.465E+02	0.606E+02	0.495E+02	0.851E+02
	25	0.123E+03	0.172E+03	0.383E+03	0.271E+04	0.617E+02	0.513E+02	0.654E+02	0.552E+02	0.930E+02
	26	0.781E+02	0.935E+02	0.238E+03	0.141E+04	0.426E+02	0.332E+02	0.442E+02	0.348E+02	0.600E+02
**************************************	27	0.763E+02	0.971E+02	0.234E+03	0.150E+04	0.415E+02	0.341E+02	0.431E+02	0.358E+02	0.602E+02
	28	0.101E+03	0.118E+03	0.313E+03	0.193E+04	0.532E+02	0.408E+02	0.565E+02	0.429E+02	0.752E+02
	29	0.124E+03	0.130E+03	0.403E+03	0.229E+04	0.641E+02	0.424E+02	0.676E+02	0.446E+02	0.841E+02
납	30	0.121E+03	0.138E+03	0.427E+03	0.282E+04	0.592E+02	0.397E+02	0.625E+02	0.426E+02	0.802E+02
<u> </u>	- 31	0.232E+03	0.275E+03	0.862E+03	0.680E+04	0.103E+03	0.637E+02	0.112E+03	0.699E+02	0.138E+03
	32	0.709E+02	0.112E+03	0.252E+03	0.256E+04	0.382E+02	0.341E+02	0.391E+02	0.352E+02	0.584E+02
	33	0.735E+02	0.120E+03	0.267E+03	0.288E+04	0.388E+02	0.352E+02	0.395E+02	0.362E+02	0.601E+02
	34	0.752E+02	0.125E+03	0.282E+03	0.313E+04	0.391E+02	0.353E+02	0.397E+02	0.364E+02	0.607E+02
	35	0.794E+02	0.133E+03	0.304E+03	0.347E+04	0.402E+02	0.361E+02	0.408E+02	0.370E+02	0.626E+02
	36	0.833E+02	0.145E+03	0.329E+03	0.400E+04	0.412E+02	0.373E+02	0.418E+02	0.383E+02	0.649E+02
	37	0.893E+02	0.167E+03	0.370E+03	0.498E+04	0.426E+02	0.398E+02	0.433E+02	0.407E+02	0.688E+02
ALL AND THE PROPERTY OF THE PR	38	0.990E+02	0.199E+03	0.433E+03	0.654E+04	0.444E+02	0.431E+02	0.452E+02	0.439E+02	0.739E+02
	39	0.120E+03	0.262E+03	0.565E+03	0.980E+04	0.498E+02	0.493E+02	0.503E+02	0.500E+02	0.849E+02
	40	0.187E+03	0.452E+03	0.971E+03	0.200E+05	0.699E+02	0.704E+02	0.704E+02	0.709E+02	0.122E+03

표 2.6-6 거리별 희석인자(계속)

7) 7)	(1rma)	1	1	여	름	가	을	겨	 울	서로그
시심	(km)	대조	소조	대조	소조	대조	소조	대조	소조	연평균
	42	0.186E+03	0.610E+03	0.106E+04	0.330E+05	0.658E+02	0.813E+02	0.645E+02	0.781E+02	0.125E+03
	44	0.198E+03	0.667E+03	0.114E+04	0.372E+05	0.690E+02	0.870E+02	0.676E+02	0.826E+02	0.133E+03
	46	0.217E+03	0.775E+03	0.128E+04	0.452E+05	0.741E+02	0.962E+02	0.725E+02	0.909E+02	0.144E+03
	48	0.246E+03	0.952E+03	0.152E+04	0.599E+05	0.813E+02	0.112E+03	0.787E+02	0.105E+03	0.162E+03
	50	0.292E+03	0.123E+04	0.186E+04	0.820E+05	0.926E+02	0.136E+03	0.893E+02	0.125E+03	0.190E+03
	52	0.325E+03	0.141E+04	0.215E+04	0.990E+05	0.101E+03	0.150E+03	0.952E+02	0.136E+03	0.207E+03
	54	0.398E+03	0.175E+04	0.275E+04	0.129E+06	0.120E+03	0.176E+03	0.112E+03	0.157E+03	0.244E+03
	56	0.552E+03	0.260E+04	0.397E+04	0.204E+06	0.159E+03	0.241E+03	0.147E+03	0.212E+03	0.328E+03
	58	0.735E+03	0.379E+04	0.549E+04	0.317E+06	0.202E+03	0.324E+03	0.186E+03	0.282E+03	0.426E+03
남	60	0.820E+03	0.424E+04	0.637E+04	0.373E+06	0.220E+03	0.351E+03	0.199E+03	0.300E+03	0.461E+03
	62	0.820E+03	0.446E+04	0.654E+04	0.408E+06	0.220E+03	0.368E+03	0.197E+03	0.309E+03	0.466E+03
	64	0.909E+03	0.524E+04	0.741E+04	0.503E+06	0.241E+03	0.422E+03	0.213E+03	0.346E+03	0.515E+03
	66	0.108E+04	0.667E+04	0.909E+04	0.676E+06	0.282E+03	0.515E+03	0.246E+03	0.417E+03	0.609E+03
	68	0.131E+04	0.870E+04	0.114E+05	0.926E+06	0.334E+03	0.645E+03	0.288E+03	0.508E+03	0.730E+03
	70	0.158E+04	0.112E+05	0.141E+05	0.126E+07	0.397E+03	0.800E+03	0.338E+03	0.621E+03	0.876E+03
	72	0.190E+04	0.146E+05	0.174E+05	0.173E+07	0.469E+03	0.101E+04	0.394E+03	0.763E+03	0.105E+04
	74	0.216E+04	0.178E+05	0.202E+05	0.218E+07	0.526E+03	0.120E+04	0.439E+03	0.893E+03	0.119E+04
	76	0.239E+04	0.203E+05	0.227E+05	0.256E+07	0.581E+03	0.136E+04	0.478E+03	0.100E+04	0.132E+04
	78	0.313E+04	0.254E+05	0.308E+05	0.332E+07	0.752E+03	0.167E+04	0.610E+03	0.120E+04	0.167E+04
	80	0.893E+04	0.386E+05	0.935E+05	0.526E+07	0.214E+04	0.248E+04	0.166E+04	0.175E+04	0.365E+04

표 2.6-7 주요지점까지 이동시간(단위:시간)

Z A -1 2		계	하	계	추	계	동	계
주요지점	대조	소조	대조	소조	대조	소조	대조	소조
근거리 (1km)	3.47	4.63	5.56	6.94	1.85	2.14	1.54	1.74
고창	138.8	115.7	69.4	46.3	277.8	231.5	463.0	347.2
군산	1944.4	1620.4	972.2	648.1	3888.9	3240.7	6481.5	4861.1
김제	1388.9	1157.4	694.4	462.9	2777.8	2314.8	4629.6	3472.2
목포	243.1	324.1	388.9	486.1	129.6	149.6	108.0	121.5
무안	173.6	231.5	277.8	347.2	92.6	106.8	77.2	86.8
부안	1112.1	925.9	555.6	370.4	2223.2	1851.9	3703.7	2777.8
신안	260.5	347.2	416.7	520.8	138.9	160.3	115.7	130.2
영암	246.5	328.7	394.4	493.1	131.5	151.7	109.6	123.3
옥구	1666.7	1388.9	833.3	555.6	3333.1	2778.9	5431.3	4166.7
함평	121.5	162.0	194.4	243.1	64.8	74.8	54.0	60.8
장항	2083.3	1736.1	1041.7	694.4	4166.7	3472.2	6944.4	5208.3

(1) 춘계

춘계의 해양확산 특성은 대조와 소조시의 평균해수유동이 거의 남서향이므로 영광원전을 중심으로 이류에 의해 남서방향으로 주로 확산된다. 부록그림 2.6-76과 부록그림 2.6-77에 대조시, 소조시의 평균 해양확산 양상을 나타내었다. 10^{-10} 의 농도는 계산영역 바깥쪽에 위치하고, 연안에 붙어서 확산하고 있다. 대조시에 소조시보다 확산이 더 빨리 일어나 이류가확산을 주도하고 있음을 알 수 있다.

(2) 하계

하계에는 해수유동에서 밝혔듯이 바람의 방향에 의해 서쪽 방향의 흐름이 다른 계절보다 강하므로 서쪽에서 북쪽으로의 해양확산도 활발히 일어난다. 부록그림 2.6-78과 부록그림 2.6-79에 대조시, 소조시의 해양확산도를 나타내었다. 대조시에도 외해에서 영광원전 서쪽 및 북쪽으로의 확산이 활발히 발생하고 있다.

(3) 추계

추계는 춘계의 해수유동양상과 거의 비슷하고 유속은 보다 강하므로 해양확산 양상은 춘계에 비교하여 남서 방향의 확산이 더욱 주도적으로 일어나고 있다. 부록그림 2.6-80과 부록그림 2.6-81에 보인 것처럼 남서방향의 확산이 주로 일어나고 북쪽으로의 확산은 거의 일어나지 않고 있다.

(4) 동계

동계에는 부록그림 2.6-82와 2.6-83에 제시된 바와 같이 추계와 거의 비슷한 분포를 보이지만 북쪽으로의 확산은 추계에 비해 비교적 활발히 일어나고 있음을 알 수 있다.

나) 비정상상태에서의 해양확산

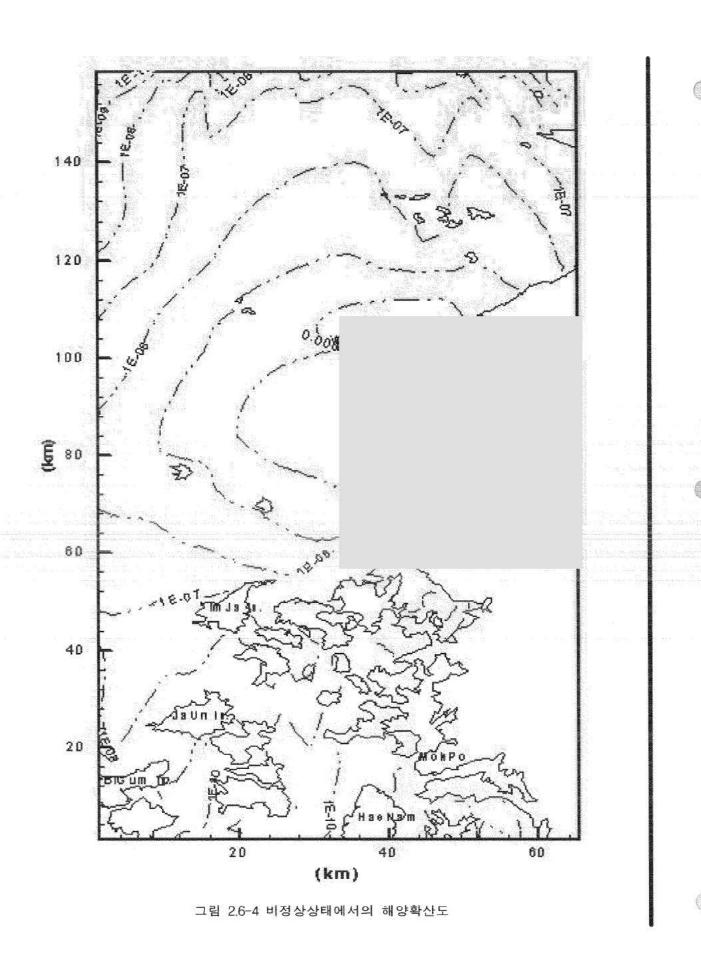

사고시에는 원천적으로 방사성물질의 해양방출이 봉쇄되므로 해양확산이 일어나지 않는다. 그러나 만일의 경우 해양방출 사고가 발생한 경우 해양확산 시뮬레이션을 행하였다. 시뮬레이션은 가장 확산이 잘 일어나지 않는 나쁜 경우를 가정하였다. 즉, 바람이 조류평균유향과 반대인 남서풍으로 8m/sec, 소조시를 가정하고 시뮬레이션을 행하였다. 비정상상태에서의 해양확산인자를 표 2.6-8에 나타내었으며, 그림 2.6-4에 비정상상태에서의 해양확산도를 나타내었다.

표 2.6-8 비정상상태에서의 해양확산인자

방위	거리 (km)	희석인자	거리 (km)	희석인자
	0.56	8.13E+00	29	1.83E+05
	1	8.47E+00	30	2.36E+05
	1.5	9.35E+00	31	1.07E+05
	2	1.06E+01	32	1.15E+05
	2.5	1.25E+01	. 33	1.49E+05
	3	1.50E+01	34	1.75E+05
	3.5	1.77E+01	35	2.26E+05
	4	2.05E+01	36	6.33E+05
	5	2.38E+01	37	1.55E+05
	6	2.75E+01	38	1.78E+05
	7	3.17E+01	39	1.96E+05
	8	3.82E+01	40	2.22E+05
	9	4,59E+01	42	2.62E+05
	10	4.35E+01	44	3.39E+05
	11	5.41E+01	46	4.63E+05
1.1	12	6.71E+01	48	7.30E+05
	13	8.40E+01	50	1.69E+06
	14	1.17E+02	52	2.80E+06
	15	2.01E+02	54	3.24E+06
	16	3.47E+02	56	4.05E+06
	17	3.41E+02	58	5.62E+06
	18	5.59E+02	60	8.06E+06
A CONTRACTOR OF THE CONTRACTOR	19	1.88E+03	62	9.80E+06
	20	2.61E+03	64	1.33E+07
	21	1.27E+03	66	2.25E+07
	22	2.45E+03	68	3.68E+07
The second secon	23	8.33E+03	70	4.15E+07
	24	4.29E+04	72	4.26E+07
	25	7.63E+04	74	5.10E+07
	26	1.07E+05	76	6.76E+07
	27	1.33E+05	78	7.51E+07
	28	1.53E+05	80	8.74E+07

표 2.6-8 비정상상태에서의 해양확산인자(계속)

방위	거리 (km)	희석인자	거리 (km)	희석인자
	0.56	8.26E+00	29	2.65E+03
	1	8.77E+00	30	4.07E+03
	1.5	9.52E+00	31	6.33E+03
	2	1.04E+01	32	1.00E+04
	2.5	1.14E+01	33	1.54E+04
	3	1.28E+01	34	2.39E+04
	3.5	1.45E+01	35	3.70E+04
	4	1.65E+01	36	5.59E+04
	5	1.90E+01	37	8.13E+04
	6	2.24E+01	38	1.14E+05
	7	2.66E+01	39	1.47E+05
	8	3.15E+01	40	1.86E+05
-	9	3.69E+01	42	2.72E+05
	10	4.27E+01	44	3.64E+05
	11	4.98E+01	46	4.42E+05
1-3	12	5.85E+01	48	5.52E+05
북	13	6.94E+01	50	6.85E+05
	14	8.33E+01	52	8.26E+05
	15	9.80E+01	54	1.08E+06
	16	1.16E+02	56	1.56E+06
	17	1.42E+02	58	2.34E+06
	18	1.72E+02	60	3.72E+06
	19	1.93E+02	62	5.99E+06
	20	2.07E+02	64	8.62E+06
and the second s	21	2.21E+02	66	1.01E+07
	22	2.36E+02	68	9.80E+06
	23	2.66E+02	70	8.33E+06
One and the second seco	24	3.32E+02	72	1.09E+07
	25	4.65E+02	74	3.89E+07
	26	7.04E+02	76	7.88E+07
To be the second of the second	27	1.10E+03	78	8.65E+07
	28	1.72E+03	80	1.12E+08

2-150 본 문서는 한국수력원자력(주)이 정보 공개용으로 작성한 문서입니다.

2.7 인 구

본 문서는 한국수력원자력(주)이 정보 공개용으로 작성한 문서입니다.

2.7 인구 및 사회 · 경제

2.7.1 인구분포

가. 20km 이내의 상주인구

1) 인구수 및 인구밀도

본 발전소 건설지인 영광군은 1978년이래 인구가 지속적으로 감소하여 1997년 12월 31일 현재 74,816명을 기록하고 있으며 인구 밀도는 3명/km이다(표 2.7-1 및 그림 2.7-1). 이는 1960년대부터 추진된 정부의 공업화 정책 및 경제의 고도성장에 따른 농·어민들의 도시로의 이동에 기인한다. 발전소가 위치한 홍농읍의 인구는 1997년 12월 31일 현재 11,114명이며인구밀도는 약 10명/km²로서 영광군 전체에 비해 다소 높은 실정이다.

부지로부터 반경 20km이내의 읍·면별 인구는 표 2.7-2와 그림 2.7-2에 각각 나타냈으며 주요 인구밀집지를 그림 2.7-3에 나타내었다. 이는 영광군과 고창군의 일부를 포함한다.

2) 인구구성

가) 성별 연령별 인구

1997년 12월 31일 현재 영광군의 인구 74,816명 중 여자가 37,528명, 남자는 37,288명을 차지하며, 성비로는 100 : 99.36으로 남자와 여자의 비가 거의 비슷하게 나타났다. 그러나 표 2.7-3에서 알 수 있듯이 이 지역은 0~24세 까지 인구 중 남자가 14,929명, 여자가 13,471명으로 남자가 1,458명이 많다. 한편, 50세 이상의 인구구성별 성비는 여자가 남자보다 훨씬 많은 것을 알 수 있다(그림 2.7-4 참조).

발전소가 위치한 홍농읍은 성비가 100 : 98.11로 영광군 전체에 비해서 남자가 여자에 비해서 약간 높게 나타났다.

또한 영광군 연령별 구조를 보면, 0~19세 사이의 인구가 21,202명으로 28.4%, 20~39세 사이의 인구는 22,161명으로 29.7%, 40~59세 사이의 인구는 18,162명으로 24.3%, 60세 이상의 인구는 13,199명으로 17.7%를 차지하고 있다. 고창군의 연령별 인구구조를 보면, 0~19가 27.3%, 20~39세가 26.9%, 40~59세가 19.4%, 60세 이상이 21%를 차지하고 있어 영광군이고창군에 비해서 젊은 층의 비율이 약간 높은 것을 알 수 있다. 이는 영광원자력 1,2,3,4호기가 영광군에 위치하고 있고, 그의 운영 및 5,6호기 건설에 참여하는 사람이 비교적 젊은 층이고, 또한 그들의 자녀들이 상대적으로 높은 비율을 차지하고 있기 때문인 것으로 판단된다.

표 2.7-1 영광군의 연도별, 읍·면별 인구 및 가구수

				<u> </u>	* (al)	
. —	н	コフグ(テ)		인구수	r(인)	
7	足	가구수(호)	계	남	र्व	가구당인구
	1978	24,184	134,980	67,788	67,192	5.6
	1979	24,092	133,168	66,542	66,626	5.5
	1980	23,934	119,966	60,502	59,464	5.0
	1981	23,733	120,871	60,873	59,998	5.1
	1982	24,327	123,279	62,457	60,822	5.1
	1983	24,673	119,392	61,127	58,265	4.8
. 3	1984	24,507	118,947	61,129	57,828	4.8
연	1985	26,207	114,059	58,236	55,823	4.3
	1986	25,065	109,758	55,439	54,319	4.3
	1987	24,385	106,389	53,283	53,106	4.3
玉	1988	24,208	104,155	52,286	51,869	4.3
	1989	24,132	103,931	52,030	51,901	4.3
	1990	23,382	85,281	42,439	42,842	3.6
별	1991	23,768	89,882	44,603	45,279	3.8
	1992	24,527	86,846	43,151	43,695	3.5
	1993	24,638	83,799	41,669	42,130	3.4
	1994	23,903	79,052	39,389	39,663	3.3
	1995	23,740	76,199	37,960	38,239	3.2
	1996	23,764	74,349	37,046	37,303	3.1
	1997	24,770	74,816	37,288	37,528	3.0
	영광읍	6,969	22,317	11,127	11,190	3.2
	백수읍	2,842	8,108	3,989	4,119	2.9
	홍농읍	3,575	11,114	5,610	5,504	3.1
읍	대마면	1,018	2,850	1,428	1,422	2.7
•	묘량면	1,021	2,864	1,425	1,439	2.8
면	불갑면	756	2,122	1,026	1,096	2.8
	군서면	1,283	3,600	1,814	1,786	2.8
븰	군남면	1,616	4,441	2,161	2,280	2.7
	염산면	2,447	7,479	3,737	3,742	3.1
	법정면	2,872	8,983	4,456	4,527	3.2
	낙월면	371	938	515	423	2.5

자료 : 영광군 통계연보, 1998.

표 2.7-1 고창군의 연도별, 읍 · 면별 인구 및 가구수(계속)

~~7	13	コマム		인구	누(인)	
구	ট	가구수	계	남	여	가구당인구
	1978	28,640	163,210	80,492	82,718	5.7
	1979	28,093	155,810	76,715	79,095	5.5
	1980	28,541	144,990	71,795	73,195	5.1
	1981	28,104	143,064	70,790	72,274	5.1
	1982	27,563	140,572	69,856	70,716	5.1
	1983	27,505	136,251	67,645	68,606	5.1
연	1984	27,279	133,175	66,280	66,895	5.0
건	1985	27,364	125,245	62,603	62,645	4.6
	1986	27,128	122,935	60,950	61,985	4.5
Ę	1987	26,737	120,340	59,676	60,664	4.5
工	1988	26,588	116,216	57,401	58,815	4.4
	1989	26,302	112,004	55,149	56,855	4.3
124	1990	26,144	95,698	47,312	48,386	3.7
豈	1991	25,348	90,299	43,538	46,761	3.6
	1992	26,305	95,858	47,384	48,474	3.6
	1993	26,391	91,855	45,523	46,332	3.5
	1994	26,157	88,038	43,556	44,482	3.4
	1995	26,296	85,239	42,088	43,151	3.2
	1996	26,408	82,656	40,732	41,924	3.1
	1997	26,258	79,823	39,287	40,536	3.0
	고창읍		20,648	10,160	10,488	
	고수면	_	3,902	1,914	1,988	_
	아산면		4,713	2,374	2,339	_
	무장면	_	5,454	2,699	2,755	*****
٥	공음면	-	4,787	2,403	2,384	_
습	상하면		3,990	1,940	2,050	_
*	해리면		5,398	2,601	2,797	
면	성송면	_	3,302	1,635	1,667	_
53 4	대산면	PARAM	6,550	3,271	3,279	_
별	심원면		4,227	2,063	2,164	
	흥덕면	_	5,220	2,523	2,697	_
	성내면	MARK!	3,475	1,744	1,731	_
	신림면		3,749	1,845	1,904	
	부안면	www	4,308	2,089	2,219	_

자료 : 고창군 통계연보, 1998.

주 : 공란은 통계연보에 누락되어 있는 부분.

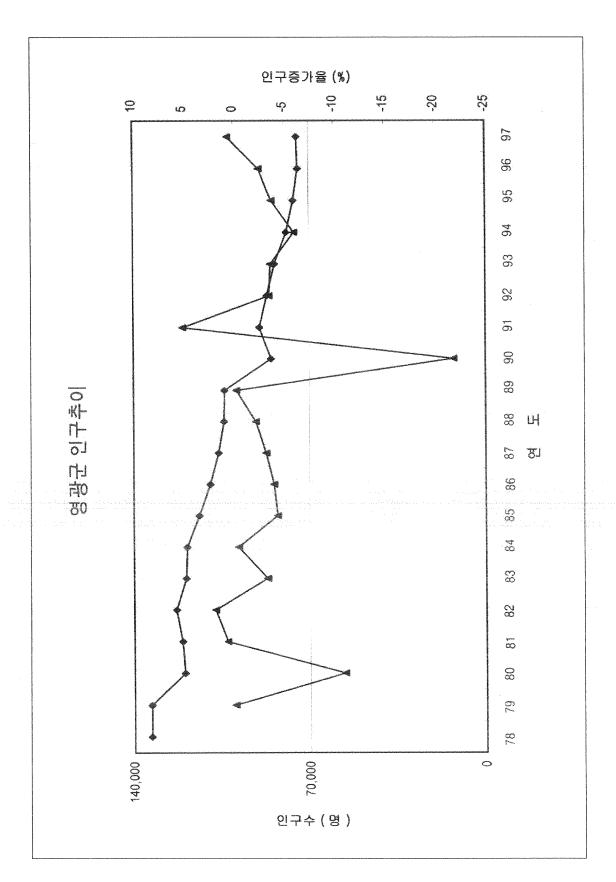


그림 2.7-1 영광군, 고창군 인구추이(1/2)

2-156본 문서는 한국수력원자력(주)이 정보 공개용으로 작성한 문서입니다.

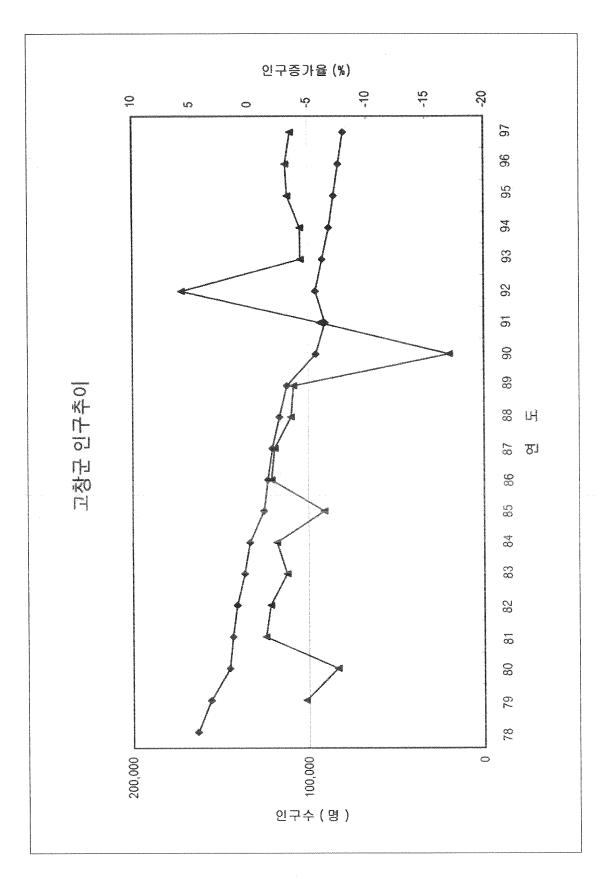


그림 2.7-1 영광군, 고창군 인구추이(2/2)

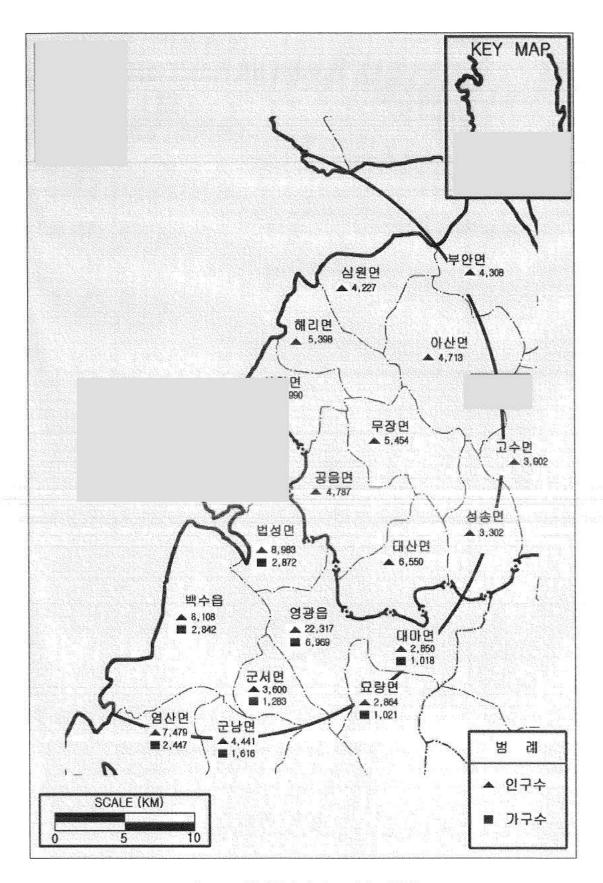


그림 2.7-2 부지주변의 읍 · 면별 인구분포

2-158 본 문서는 한국수력원자력(주)이 정보 공개용으로 작성한 문서입니다.

그림 2.7-3 20km 이내의 주요 인구밀집지

2-159본 문서는 한국수력원자력(주)이 정보 공개용으로 작성한 문서입니다.

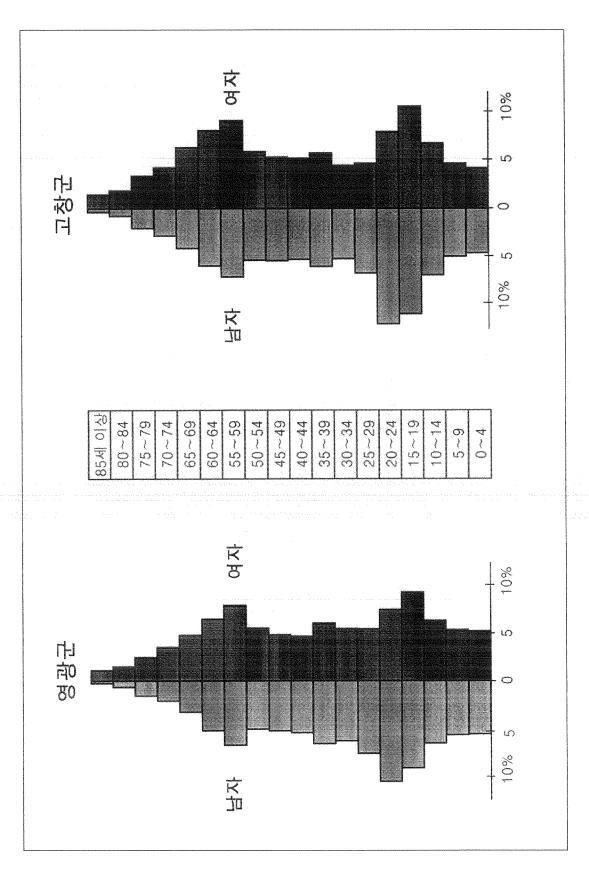


그림 2.7-4 영광군 및 고창군의 성별 인구분포

표 2.7-2 부지로부터 20km 이내의 행정단위별 인구 (단위: 명)

=1 -1 -1 0	Ç	인 구 수(인)	મી ઢ ો-	비고
행정단위	계	납	여	방 향	비고
영광군					
홍농읍	11,114	5,610	5,504	부지	전지역 포함
법성면	8,983	4,456	4,527	SE	전지역 포함
백수읍	8,108	3,989	4,119	S	전지역 포함
영광읍	22,317	11,127	11,190	SE	일 부 포함
군서면	3,600	1,814	1,786	SSE	전지역 포함
군남면	4,441	2,161	2,280	SSE	일 부 포함
염산면	7,479	3,737	3,742	S	일 부 포함
대마면	2,850	1,428	1,422	ESE	일 부 포함
묘량면	2,864	1,425	1,439	SE	일 부 포함
고창군					
고 정 T 상 하 면	3,990	1,940	2,050	NE	전지역 포함
해리면	5,398	2,601	2,797	NE NE	전지역 포함
에 더 단 공음면	4,787	2,403	2,737	ESE	전지역 포함
심원면	4,787	2,463	2,164	NE	전지역 포함
아산면	4,713	2,374	2,339	ENE	일 부포함
무장면	5,454	2,699	2,755	NE	전지역 포함
대산면	6,550	3,271	3,279	ESE	전지역 포함
성송면	3,302	1,635	1,667	ESE	일 부 포함
78 77	3,302	1,050	1,007	EOF	5 1 7 1

자료 : 영광군 · 고창군 통계연보, 1998.

나) 경제활동인구

본 사업지역인 영광군은 농업과 어업을 주로 하는 지역으로 1997년 12월 31일 현재 총인 구 74,816명 중 경제활동 인구는 52,458명으로 70.1%를 차지한다(표 2.7-4).

3) 인구변화 추이

본 사업지역인 영광군의 인구는 1978년 134,980명에서 1987년에는 106,389명으로 10년 동안 28,592명이 줄어들었고, 또 1996년에는 74,349명으로 또 32,040명이 감소하였다. 그 이후 1997년에 74,816명으로 전년에 비해 467명이 늘어났으며, 이 후 영광원자력 5,6호기가 완공될 때까지 당분간은 큰 변화가 없을 것으로 판단된다(표 2.7-1, 그림 2,7-1 참조)

표 2.7-3 성별 · 연령별 인구분포

A 74	•	영 광 군			고 창 군	
연 령	계	남	여	계	남	여
≥ -ù	100			100		
총계	74,724	37,247	37,477	79,723	39,261	40,462
0~4	5.76			4.5		
0~4	4,307	2,227	2,080	3,580	1,886	1,694
5~9	5.98			4.9		
3.79	4,401	2,258	2,143	3,911	2,024	1,887
10~14	6.86			7.0		
10 14	5,130	2,606	2,524	5,543	2,805	2,738
15~19	9.85			10.9		
10 - 13	7,364	3,636	3,728	8,728	4,452	4,276
20~24	9.63			10.1		
20 24	7,198	4,202	2,996	8,086	4,868	3,218
25~29	6.97			5.8		
25~29	5,210	3,037	2,173	4,622	2,728	1,894
30~34	6.29			4.9		
30 34	4,698	2,507	2,191	3,935	2,125	1,810
35~39	6.76			6.0		
აე <i>~</i> აყ	5,055	2,626	2,429	4,774	2,444	2,330
40~44	5.41			5.3		
40~44	4,043	2,169	1,874	4,259	2,149	2,110
45~49	5.39			5.5		
43 43	4,029	2,087	1,942	4,362	2,200	2,162
50~54	5.67		The contract of the contract o	5.7		
30 - 34	4,235	2,017	2,218	4,568	2,175	2,393
55~59	7.84			8.2		No. of the Control of
30 - 39	5,855	2,681	3,174	6,577	2,879	3,698
60~64	6.26			7.1		
00 - 04	4,679	2,081	2,598	5,697	2,413	3,284
65~69	4.31			5.3		
05.~09	3,221	1,302	1,919	4,247	1,679	2,568
70~74	3.01			3.6		- Aleksandra de la companya de la co
10~74	2,250	836	1,414	2,866	1,143	1,723
75 - 70	2.17			2.7		
75~79	1,624	622	1,002	2,154	827	1,327
80이상	1.91			2.2		
00,1,92	1,425	353	1,072	1,814	464	1,350

자료 : 영광군, 고창군 통계연보, 1998.

표 2.7-4 직업별 인구현황

	_	지역별		영광군			고창군	
	구분		계	남	여	계	남	여
		총인구	74,816	37,288	37,528	79,723	39,261	40,462
퍼]		계	22,358	10,204	12,154	24,115	10,828	13,287
경제 활동		0 ~ 14세 인구수	13,838	7,091	6,747	13,034	6,715	6,319
인구		65세 이상 인구수	8,520	3,113	5,407	11,081	4,113	6,968
경		계	52,458	27,084	25,374	55,608	28,433	27,175
제		소계	16,300	-			-	_
활동			4,110	_	_		viteer	
인 구	직	행정 및 관리직	1,953	_	_		-virtus	
^	업 별	사무 및 관리직	821		- Parama	shoor	_	
15 세	취	판매종사자	3,420				_	-
이 상	업	서비스직 종사자	4,833		- American		water -	
65	인 구	농업, 축산업, 임업, 수산업, 수렴업 종사자	455		Alabah.		(qual)	
세미	None was the successful property of the contract of the contra	생산직, 운수장비 운전사 및 단순노무	708	and a		and the		-
만		기타			Vana.			
	ום	취업자(15세이상 학생 포함)	_			_		

자료 : 영광군, 고창군 통계연보, 1998.

이러한 인구변화추세를 파악하기 위해서 영광군과 고창군의 인구변동을 사회적·자연적변화로 구분하여 표 2.7-5~6에 나타내었다. 특히, 발전소가 위치한 영광군을 살펴보면, 사회적 변화는 주민등록의 전·출입에 의한 것으로 전입은 1996년까지 감소하다가 1997년에 급격히 증가하였으며, 전출은 계속적으로 큰 변화 없이 감소 추세를 보인다. 1997년에 전입인구가 10,080명으로 급격히 증가한 이유는 영광원자력 5,6호기 건설로 인한 사회적 유동인구의 증감이 시각적으로 확연하게 드러나 보이는 현상이라고 판단된다. 한편, 출생률과 사망률의 차이로 표시되는 자연적 증가율 변화를 보면, 출생인구와 사망인구가 지속적으로 줄어드는 경향을 보인다. 이는 정부에서 추진하고 있는 가족계획사업인 산아제한에 의한 출생인구의 감소와 젊은 층의 도시이동으로 인해 가임 인구의 감소 등 복합적인 요인에 의한 것이다.

표 2.7-5 영광군의 사회적, 자연적 인구변동

구분		사회적 인구	변동		자연적 인구	변동
연도별	전입(A)	전출(B)	순이동(A-B)	출생(명)	사망(명)	자연증가율(%)
1992	9,524	13,030	-3,506	1,160	1,273	-0.10
1993	9,199	12,557	-3,358	1,168	1,085	0.07
1994	6,823	11,752	-4,929	1,001	1,075	-0.07
1995	8,229	11,004	-2,775	933	985	-0.06
1996	6,561	8,472	-1,911	899	923	-0.03
1997	10,080	9,697	383	831	990	-0.19

자료 : 영광군 통계연보, 1998.

표 2.7-6 고창군의 사회적, 자연적 인구변동

구분		사회적 인구	변동		자연적 인구	변동
연도별	전입(A)	전출(B)	·순이동(A-B)	출생(명)	사망(명)	자연증가율(%)
1992	6,551	12,232	-5,681	793	1,086	-0.37
1993	6,644	10,365	-3,721	760	998	-0.31
1994	5,637	8,893	-3,256	716	962	-0.34
1995	7,323	9,991	-2,668	803	939	-0.17
1996	6,525	8,950	-2,425	667	869	-0.30
1997	5,823	8,562	-2,739	690	857	-0.24
ŧ	1	1	f	1	1	1

자료 : 고창군 통계연보, 1998.

4) 구역별 상주인구

부지로부터 반경 16km이내의 지역을 16개의 방사지역(22.5°의 방위각에 의해 구분됨)과 6개의 동심원지대(원자로 노심으로부터의 거리에 의해 구분됨)로 총 96개의 단위지역으로 구분하였다. 각 구역별 상주인구는 아래의 방법에 의해 조사되었다.

- o 1:50,000 지형도 위에 부지를 중심으로 2, 4, 6, 8, 10, 20km 반경의 동심원을 그린다.
- o 부지중심으로부터 16 방위별로(각 22.5°) 방사선을 긋는다.
- o 인구성장률을 추정하기 위한 가정과 전제를 고려하여 각 구역별 인구성장률을 구하였다.
- o 각 구획별 인구는 각 구획의 추정 인구성장률에 따라 결정되었으며, 이를 표와 그림으로 나타냈다.

위와 같은 방법으로 구한 반경 20km이내의 구역별 인구는 표 2.7-7과 그림 2.7-5와 같다.

나. 20km~80km 사이의 상주인구

부지반경 20km에서 80km 사이에는 목포시, 나주시, 영광군, 장성군, 담양군, 함평군, 무안 군, 화순군, 영암군, 신안군, 곡성군, 장흥군, 강진군, 해남군, 군산시, 김제시, 익산시, 전주시, 정읍시, 남원시, 고창군, 부안군, 순창군, 완주군, 임실군, 서천군 등의 시·군이 소재한다. 이들 시·의 상주인구는 표 2.7-8과 그림 2.7-6에 나타내었다. 부지로부터 반경 20km에서 80km까지의 상주인구는 2.7.1.1.라에서 구한 방법과 동일한 방법으로 산출하였다. 다만 부지로부터의 거리를 20km, 35km, 50km, 65km 및 80km로 구분하였으며, 이렇게 구한 구역별인구는 표 2.7-9와 그림 2.7-7에 각각 나타내었다. 부지반경 20km에서 80km 사이의 성별인구는 남자가 1,708,533명, 여자가 1,682,087명이며, 표 2.7-10과 그림 2.7-8에 20km에서 80km사이의 성별, 연령군별 인구를 나타내었다. 이 결과에 따르면 20km에서 80km까지의총 인구는 3,390,620명으로 산출되었다.

표 2.7-7 부지로부터 20km 이내의 구역별 인구현황 (단위: 명)

니. 국 ት			부지로	부터의 거리	(km)		
방향	0~2	2~4	4~6	6~8	8~10	10~20	계
N		-	Addin.		-		
NNE	17	108	56		137	886	1,204
NE	86	_	693	830	1,253	7,270	10,132
ENE	756	773	319	.822	677	3,403	6,750
E	172	807	1,048	1,105	450	7,153	10,736
ESE	_	1,168	1,134	1,309	936	8,324	12,871
SE	_	1,065	829	1,629	1,489	13,737	18,749
SSE		790	1,048	112	1,979	18,520	22,449
S		258	388	63	195	6,985	7,889
SSW	533	_	_	216	230	2,523	3,502
SW	34		-		_	_	34
WSW	_		_			_	-
W	war	-				-	
WNW						_	
NW	_		work	manun			_
NNW			_		_	_	
합 계	1,598	4,970	5,515	6,086	7,346	68,802	94,317

INTERVAL(KM)	0.0-2.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	10.0-20.0	TOTAL
POPULATION (PERSON)	1,598	4,970	5,515	6,086	7,346	68,802	94,317
NW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SW	0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	596 314 3,278 48 2,586 4,752 2,842 2,842 10,18	4,8 6,901 62 6,892 11,606 5,488 7,7 13,474	29,068 345 5,793 334 8,751 2,77 4,810 895 85,511	15,834 ENF 15,834 ENF 35,061 ESE

그림 2.7-5 반경 20km 이내의 구역별 인구현황

표 2.7-8 부지로부터 80km 이내의 행정단위별 인구현황 (단위 : 명)

레지구서	ココム	ما ٦ ٨	위	치
행정구역	가 구 수	인 구 수	거 리(km)	방 향
광주광역시	400,389	1,326,478	55	ESE
전라남도				
나주시	40,084	112,735	52	SSE
목포시	76,624	250,178	66	S
영광군	24,770	74,816	17	SSE
장성군	19,655	57,841	35	ESE
담양군	18,971	58,810	53	ESE
함평군	17,309	48,304	39	SSE
무안군	24,127	71,919	47	S
화순군	24,955	73,828	65	SE
영암군	22,158	63,863	73	SSE
신안군	19,896	56,857	75	SSW
곡성군	13,957	41,288	80	E
장흥군	19,370	57,563	80	SSE
강진군	18,000	52,228	80	SSE
해남군	33,630	99,392	80	S
:				
전라북도			A Delivery of the Control of the Con	
군산시	85,518	280,665	70	NNE
김제시	40,050	121,636	60	NE
익산시	101,436	333,788	76	NE
전주시	175,945	599,196	80	NE
정읍시	48,916	150,505	43	ENE
남원시	34,050	106,300	80	E
고창군	26,370	78,587	26	E
부안군	26,517	79,398	46	NE
순창군	12,773	36,832	66	E
완주군	27,578	86,138	80	NE
임실군	13,814	40,515	80	ENE
충청남도				
서천군	26,055	81,111	78	NNE

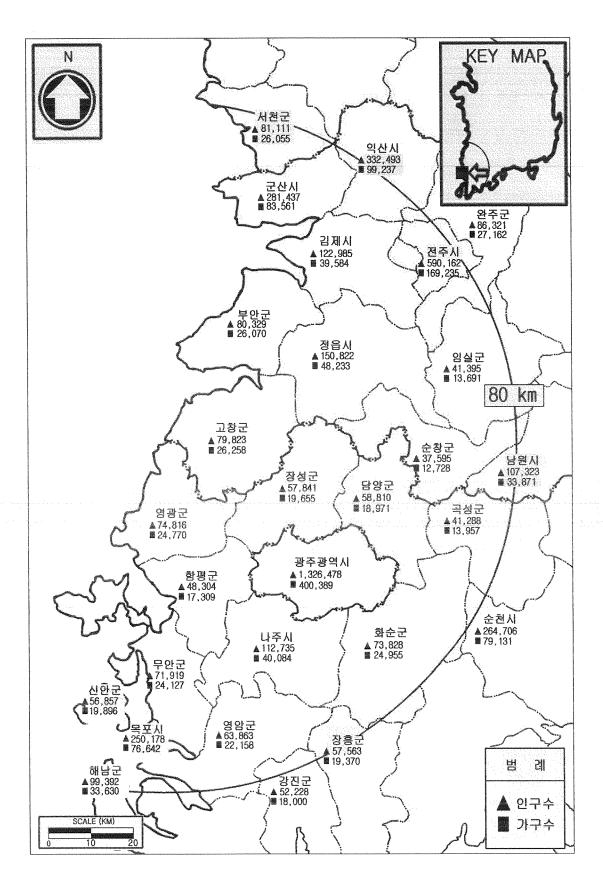


그림 2.7-6 부지로부터 80km 이내의 행정구역별 인구 및 가구수

INTERVAL(KM)	20-35	35-50	50-65	65-80	TOTAL
POPULATION (PERSON)	135,894	899,929	1,334,329	1,020,468	3,390,620

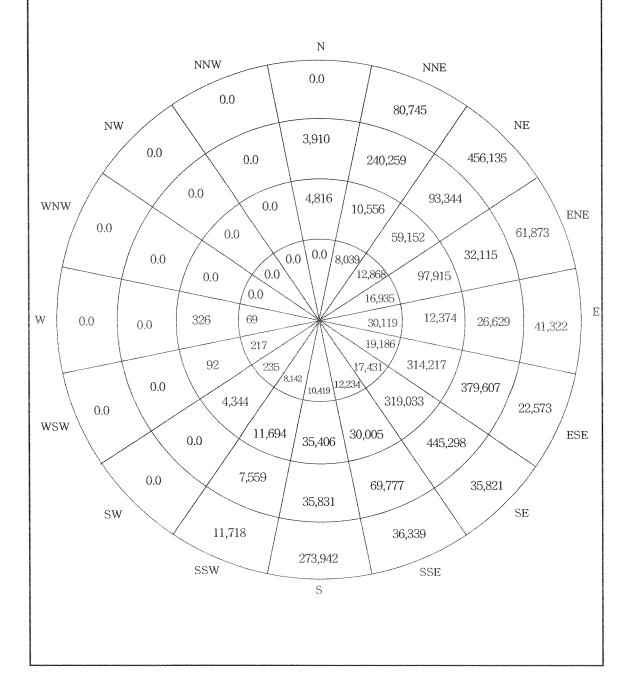


그림 2.7-7 반경 20-80km 사이의 구역별 인구현황

표 2.7-9 부지로부터 20~80km 내의 구역별 인구현황 (단위 : 명)

		부지로부터의	리 거리(km)		·.			
방향	20~35	35~50	50~65	65~80	계			
N	Marin	4,816	3,910	anna de cala de la Cala de Cal	8,726			
NNE	8,039	10,556	240,259	80,745	339,599			
NE	12,868	59,152	93,344	456,135	621,499			
ENE	16,935	97,915	32,115	61,873	208,838			
Е	30,119	12,374	26,629	41,322	110,444			
ESE	19,186	314,217	379,607	22,573	735,583			
SE	17,431	319,033	445,298	35,821	817,583			
SSE	12,234	30,005	69,777	36,339	148,355			
S S	10,419	35,406	35,831	273,942	355,598			
SSW	8,142	11,694	7,559	11,718	39,113			
SW	235	4,344			4,579			
WSW	217	92	_	ween	309			
W	69	326			395			
WNW	-	_	Lama	-	_			
NW	_							
NNW	_			man and a second a				
합 계	135,894	899,929	1,334,329	1,020,468	3,390,620			

표 2.7-10 부지반경 20km에서 80km사이의 성별, 연령군별 인구수

연령군	남자(명)	여자(명)	구성비(%)
0 ~ 4	133,266	131,203	7.8
5 ~ 9	121,306	119,428	7.1
10 ~ 14	126,431	124,474	7.4
15 ~ 19	148,642	146,342	8.7
20 ~ 24	152,059	149,706	8.9
25 ~ 29	165,728	163,162	9.7
30 ~ 34	155,477	153,070	9.1
35 ~ 39	158,894	156,434	9.3
40 ~ 44	128,140	126,156	7.5
45 ~ 49	95,678	94,197	5.6
50 ~ 54	78,593	77,376	4.6
55 ~ 59	75,175	74,012	4.4
60 ~ 64	61,507	60,555	3.6
65 ~ 69	42,713	42,052	2.5
70 ~ 74	30,754	30,278	1.8
75 ~ 79	18,794	18,503	1.1
80 이상	15,377	15,139	0.9
계	1,708,533	1,682,087	100

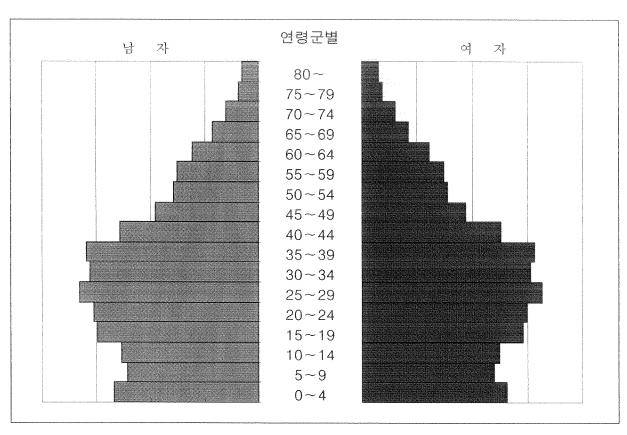


그림 2.7-8 부지반경 20km에서 80km사이의 성별, 연령군별 인구분포

다. 유동인구

영광군내의 관광지로는 불갑사 등의 5개(불갑사, 가마미 해수욕장, 원불교 영산성지, 법성 포 단오제행사, 염산 수산물포도젓갈대축제) 관광지가 있으나 관광객수는 많지 않아 1998년 현재 302,891명 정도이다. 이들 관광객은 해수욕철인 7월과 8월에 가장 많은 수를 보이기는 하지만(표 2.7-11) 대체로 4계절에 고르게 분포되어 있는데 이는 해수욕장, 사찰, 축제 등다양한 자연경관과 위락시설 등이 잘 조화를 이루고 있기 때문으로 분석되며, 영광군내의 주요 관광지별 관광객수를 표 2.7-12에 나타내었다.

표 2.7-11 월별 관광객 현황 (단위 : 명)

연도별 월별	1994	1995	1996	1997	1998
계	25,850	106,050	136,270	280,740	302,891
1월	550	650	1,800	6,470	5,900
2월	500	650	1,800	6,050	5,910
3월	900	1,200	3,000	6,150	5,930
4월	700	900	3,230	8,170	5,930
5월	700	900	3,430	8,270	5,930
6월	800	21,100	31,440	72,000	90,000
7월	11,185	24,280	37,440	70,600	80,000
8월	6,115	49,120	41,740	72,030	80,000
9월	900	1,300	4,040	11,000	5,960
10월	1,300	2,550	3,150	8,700	6,060
11월	1,300	1,800	3,150	6,150	5,620
12월	900	1,600	2,050	5,150	5,631

자료 : 영광군 통계연보, 1994, 1995, 1996, 1997, 1998.

또한 1994년부터 1998년까지의 영광군의 관광객 추이를 보면(그림 2.7-9), 1994년 25,850 명에서 1998년 302,891명으로 연평균 약 39%의 높은 증가율을 보이며, 이는 각 지역별로 행해지는 축제 등 영광군이 관광객유치에 적극적으로 대처하고 있음을 보여준다.

고창군 내에는 선운사 도립공원을 비롯한 10개소(선운산 도립공원, 고창읍성, 석정온천, 구시포해수욕장, 동호해수욕장, 모양성제, 지석묘공원, 미당생가, 인촌생가, 문수사계곡)가 있으며, 연 관광객수는 1998년 현재 912,897명에 이른다(표 2.7-12). 영광군과 고창군내를 찾는 관광객 중 현지 주민도 일부 포함되어 있으나 전체관광객수에 비해 미미하다. 앞으로 이러한 관광객 수는 경제적 여유의 증가와 휴가를 즐기려는 욕구의 증가, 교통수단의 발달 등으로 인하여 계속 지속될 것으로 예상된다.

표 2.7-12 1998년과 1999년의 영광군, 고창군 관광객 현황

구 분		영 광 군		구 분		고 창 군	
관광지명	1998	1999	외국인	관광지명	1998	1999	외국인
불갑사	37,996	47,810	1,385	선운산 도립공원	268,611	322,154	478
가마미 해수욕장	142,675	80,254	2,557	고창읍성	155,921	157,697	127
원불교 영산성지	83,387	75,464	2,018	석정온천	297,879	375,764	57
법성포 단오제 행사	35,189	35,189	84	구시포 해수욕장	61,937	63,086	42
염산				동호 해수욕장	34,949	70,826	308
수산물 포도젓갈	namer .	31,879		모양성제	36,000	39,823	150
대축제				기타 관광지	57,600	266,495	689
합계	299,247	270,596	6,044		912,897	1,295,845	1,851

자료: 영광군청 문화공보실, 고창군청 문화체육과, 1999.

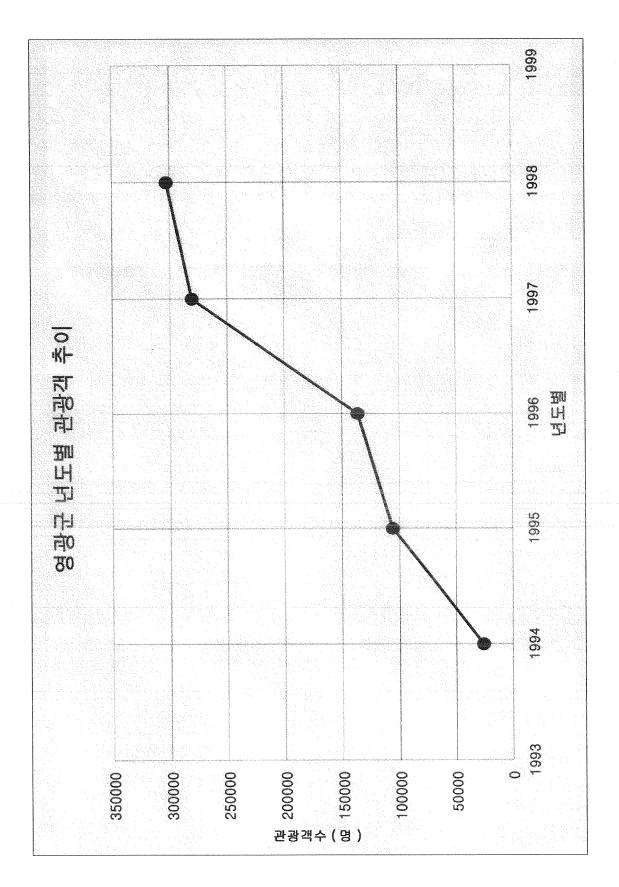


그림 2.7-9 영광군 관광객 추이

2-174 본 문서는 한국수력원자력(주)이 정보 공개용으로 작성한 문서입니다.

2.7.2 인구추정

가. 인구추계 방법

본 지역은 개방사회이고 인구추정의 사용목적이 성별, 연령별로 구성된 어느 특수 집단이 아닌 지역인구 총 수이고 추정기간이 2002년에서 2042년에 이르는 장기간 예측인 바, 현재까지 알려진 어떠한 방법으로도 정확성을 기대할 수 없을뿐더러 위와 같은 방법, 예컨대 Cohort-Component Method와 같은 방법을 적용할 때 충족시킬 기초자료가 미비함은 말할 것도 없다.

인구추계에 사용된 식은 다음과 같다.

 $P_{t+n} = P_t \times e^{rn}$

여기서, P_t : 시점 t에서의 인구

 P_{t+n} : 시점 t+n에서의 인구

e: 지수함수

ア: 시점 t와 t+n사이의 연평균 성장률

n: 기간(Year)

나. 20km 이내의 예측인구

발전소 부지로부터 반경 20km 이내의 예측인구는 1997년의 94,317명에서 2002년 70,664명, 2042년 18,380명으로 계속 감소하는 것으로 예측되었으며, 각 구역별 인구예측 결과는 부록표 2.7-1에서 2.7-5까지, 그리고 부록그림 2.7-1에서 2.7-5까지 나타내었다.

다. 20~80km 사이의 예측인구

부지로부터 반경 20km에서 80km까지의 예측인구는 부록표 2.7-6에서 2.7-10까지와 부록 그림 2.7-6에서 2.7-10에 제시하였다. 이 결과에 따르면 20km에서 80km까지의 총 인구는 1997년의 3,390,620명에서 2002년 3,878,379명, 2042년 9,454,983명이 될 것으로 예측되었다.

2.8 환경방사선/능 현황

2.8 환경방사선/능 현황

원자력발전소 주변에 대한 환경방사능 조사의 목적은, 첫째, 원자력발전소 주변주민들이 발전소 가동으로 인해 추가로 받게되는 방사선량이 일반인에 대한 연간 선량한도 이내로 충 분히 유지되고 있는지를 확인함으로써 주변주민의 건강과 안전을 확보하고, 둘째, 원자력발 전소 주변환경의 방사성물질 축적경향 여부를 파악하며, 셋째, 원자력발전소로부터의 예기치 않은 방사능 물질의 방출로 인한 주변환경의 영향을 판단할 수 있는 자료의 확보 및 평가능 력을 제고하고, 넷째, 원자력발전소 주변환경이 철저하고 과학적으로 관리되고 있다는 사실 을 일반국민들에게 알려 원자력발전소에 대한 국민의 바른 이해와 협조를 구하기 위함이다.

위와 같은 목적달성을 위해서 영광원자력발전소에서는 1979년부터 1986년 3월까지 한국원 자력연구소의 기술지원 및 협조 하에 발전소 부지의 가동전 환경조사 및 평가를 수행하였으며 1986년 1월부터는 자체 환경방사능실험실을 확보하여 지속적인 환경방사능 감시활동을 수행하여 왔다. 이 중에서 최근 5년간의 자료를 종합, 정리하여 아래에 제시하였다. 참고로, 모든 자료의 평균치는 MDA(Minimum Detectable Activity; 계측기의 최소검출능) 이하 등 N.D(Non Detectable; 검출불능) 자료를 제외한 측정치만을 평균한 값이다.

2.8.1 환경방사선

가, 환경방사선 감시기에 의한 공간선량률

영광원자력발전소 주변의 공간선량률 측정은 지상 1m 높이의 공기 중에 존재하는 시간당 감마방사선량률로서 부지주변 8곳과 비교지점 2곳에 설치된 환경방사선감시기(Reuter-Stokes 사, RSS-1012)를 이용하여 연속측정하며 측정된 데이터는 발전소 주제어실 및 환경실험실 전산기로 전송되어 연속감시할 수 있도록 되어있다. 최근 5년 간 조사결과를 종합한 결과는 표 2.8-1과 같다. 부지주변 10곳의 연간 평균값은 101.49 nGy/yr로 예년과 비슷한 수준이었으며 지점별로 연간 평균값을 비교해 보면 비교지점인 영광이 145.4 nGy/hr로 가장 높았고, 가마미가 78.1 nGy/hr로 가장 낮게 나타났으며, 전지점에서 평상변동범위 수준으로 나타났다.

나. 휴대용 계측기에 의한 공간선량률

발전소 제한구역 내·외의 공간감마방사선량률은 휴대용 계측기인 저준위 감마써베이미터 (Micro R meter)를 이용하여 월 1회의 주기로 측정한 후 분기별 평균값을 산출하였다. 총조사대상 지점은 발전소를 중심으로 16방위로 나눈 다음 거리에 따라 대기확산인자, 주풍하

방향, 인구 밀집지역, 접근의 용이성 등을 고려하여 33곳(부지내부 8곳, 부지외부 25곳)을 선정하였다. 최근 5년 간 조사결과를 종합 정리한 결과는 표 2.8-2와 같다. 최근 5년간의 측정결과를 보면 제한구역 내의 8곳의 5년간의 평균 선량율은 98.86 nGy/hr이며 비제한구역 25곳의 5년간의 평균 선량율은 120.64 nGy/hr의 값을 보여 제한구역보다 비제한구역이 약간 높은 수치를 보이고 있으며, 휴대용 계측기에 의한 공간감마방사선량율은 환경방사선감시기에 의한 공간선량율과 비슷한 경향을 나타내고 있다.

다. 열형광 선량계(TLD)에 의한 공간집적선량

공간집적선량을 측정하기 위해 부지내부 7곳과 부지외부 36곳을 선정하여 지상 1m 높이에 지점당 3개의 열형광선량계(TLD)를 분기동안 비치한 후 회수하여 열형광선량계 판독기 (TLD Reader)로 3개월간 누적된 선량을 평가하였다. 측정결과 부지내부 7곳의 5년간 평균 값은 171.73 μGy/91일로 나타났고, 부지외부 36곳의 5년간 평균값은 217.88 μGy/91일로 나타났다. 이 수치를 시간당 감마선량율로 환산해 보면 부지내부는 78.63 nGy/hr, 부지외부는 99.76 nGy/hr에 해당되어 환경방사선감시기나 휴대용계측기에 의한 공간선량율 측정치와 비슷하게 나타났다. 최근 5년 간 조사결과를 종합 정리한 결과는 표 2.8-3에 나타냈으며 환경방사선감시기와 휴대용계측기, 그리고 열형광 선량계에 의한 공간선량률 및 공간집적선량을 가동전과 연도별로 변동추이를 관찰하기 쉽도록 그림 2.8-1~3에 나타냈었다.

표 2.8-1 환경방사선 감시기에 의한 공간선량률

지점	방위	거리		측정	결과(nG	y/h)		평균
시심	1871	74	1995	1996	1997	1998	1999	311
취수구 ^{주1)}			92.5	99.0	98.0	97.0	93.8	96.1 ± 2.48
본부정문 ^{취)}			122	5123		2	91.3	91.3
계동 ^{주1)}			103.0	112.0	120.0	120.0	120.0	115.0 ± 6.75
배수로 ^{주1)}			-	2	201	<u>r</u> e	88.2	88.2
청경사택			94.3	97.0	95.0	96.0	91.9	94.8 ± 1.72
주사무실 ^{주2)}			122.2	128.0	127.0	108.0	111.2	119.3 ± 8.21
주사무실 ^{주2)}			-	-	1000	-	87.0	87.0
가마미 ^{주2)}			76.8	74.0	75.0	80.0	84.7	78.1 ± 3.87
본부후문 ^{주2)}			=	-	-	-	88.7	88.7

표 2.8-1 환경방사선 감시기에 의한 공간선량률(계속)

지점	મો લો	7] 7]		측정	결과(nG	y/h)		평균	
시점	방위	거리	1995	1996	1997	1998	1999	- 영진	
홍농서초교			94.3	100.0	89.0	83.0	80.4	89.3 ± 7.18	
홍농사택			106.5	102.0	102.0	102.0	100.9	102.7 ± 1.95	
법성			103.9	110.0	103.0	96.0	99.8	102.5 ± 4.65	
영광 ^{주3)}			144.9	150.0	144.0	146.0	142.0	145.4 ± 2.66	
영광 ^{주3)}			-	-	-	-	105.0	105.0	
고창			128.3	128.0	118.0	110.0	110.4	118.9 ± 8.04	

- ※ '99년 상반기 중에는 구형 감시기의 노후화에 따른 오작동으로 이상치가 가끔 발생하였으나, 신형 감시기로 교체하여 자료를 취득한 '99년 7월 이후에는 기기 이상으로 인한이상치 발생이 없음.
- 주1) '99년 7월부터 취수구에서 본부정문으로, 계동에서 배수로로 측정지점이 변경됨.
- 주2) '99년 7월부터 주사무실의 측정위치가 약간 이동되고, 가마미는 본부후문으로 측정지점 이 변경됨.
- 주3) '99년 7월부터 영광의 측정위치가 약간 이동됨.

표 2.8-2 휴대용계측기에 의한 공간선량률

		위	え		공간선	[량률(nG	y/hr)		3.0
구분	조사지점	방위	거리 (km)	1995	1996	1997	1998	1999	평 균 ^{주4)}
	발전소정문 ^{주1)}			112.19	114.4	108.2	94	107	107.16±7.1
	취수구 ^{추2)}			94.42	96.5	98.4	91	94	94.86±2.5
	본부정문 ^{주2)}			_	- 2	_	×= -	98	98.00±39.2
제	정수장			108.53	106.4	98.2	92	89	98.83±7.7
	배수구			108.53	103.5	102.1	92	90	99.23±7.1
한 구	기상관측소			120.61	112.9	95.5	95	94	103.60±11.0
· 역	주사무실			118.05	119.8	117.9	105	96	111.35±9.3
	계동 ^{주2)}			110.35	119.1	115.7	113	121	115.83±3.9
	배수로 ^{주2)}			_	-	150	14	90	90.00±36.0
	본부후문 ^{주2)}			_	500	_	-	92	92.00±36.8
	청경사택 ^{주3)}			107.44	101.3	88.1	86	- 35	95.71±39.1

표 2.8-2 휴대용계측기에 의한 공간선량률(계속)

L.	- 3-3-3	위	치		공간선	l량률(nG	y/hr)		
구분	조사지점	방위	거리 (km)	1995	1996	1997	1998	1999	평 균 ^{주4)}
	청경사택 ^{주3)}			-	-	-	-	87	87.00±34.8
	가마미 ^{추2)}			72.84	72	69.8	66	68	69.73±2.5
	홍농서초교			91.72	96	92.7	84	81	89.08±5.6
	몽냉기			117.65	117.1	103.6	94	93	105.07±10.7
	홍농사택	_		114.38	111.8	105.4	97	94	104.52±8.0
	양지 ^{주1)}			102.68	111.5	102.3	94	96	101.30±6.1
	월곡	_		109.25	115.6	99.2	97	89	102.01 ± 9.4
	법성			118.02	106.4	104.7	93	96	103.62±8.8
	월안 ^{주1)}			114.39	117.8	118.6	101	103	110.96±7.5
	상삼			146.9	139.5	117.8	110	111	125.04±15.2
	하삼			141.42	134.4	119.7	104	110	121.90 ± 14.2
비제	덕산			158,96	142.1	118,4	112	98	125.89±21.8
한	상석			212.3	225.2	210.9	205	196	209.88±9.6
ー 子	자룡			159.33	166.7	134.1	121	108	137.83 ± 22.3
역	구시포			128,99	135.7	122.2	102	107	119.18±12.8
	자갈금			125.7	108.8	109.6	103	107	110.82±7.8
	대치미			121.71	112.9	106.7	103	96	108.06±8.7
	신두암			143.26	137.4	125.4	110	112	125.61 ± 13.3
	삼덕초교			146.53	162.7	144.9	121	112	137.43±18.4
	용대	223 <u>88</u> 8		138.15	130.9	125.3	127	107	125.67 ± 10.3
	섬포	_		169.55	148.2	136.7	122	124	140.09 ± 17.5
	공음중학교	_		145.87	138.1	131.5	150	123	137.69 ± 9.7
	송정			187.09	175	158.3	103	155	155.68 ± 28.8
	나성초교			119.14	133	117.2	141	102	122.47±13.5
	영광			157.49	169.3	150.6	106	124	141.48±23.1
	고창			129.36	123.9	120.5	111	108	118.55±8.0

주1) 조사계획 개정('99.2.27 과기부 승인)에 따라 측정을 실시하지 않음.

주2) '99.7월부터 취수구, 계동, 가마미는 각각 본부정문, 배수로, 본부후문으로 측정지점이 변경됨.

주3) 조사계획 개정('99.2.27 과기부 승인)에 따라 청경사택은 부지내부(제한구역)에서 부지 외부(비제한구역)로 변경됨.

주4) 평균의 칸에 있는 $\pm \sigma$ 은 각 년도 측정치의 1σ 표준편차임.

표 2.8-3 열형광선량계(TLD)에 의한 공간집적선량

		위	치		공간집적	선량(μ(Gy/91일)			
구분	조사지점	방위	거리 (km)	1995	1996	1997	1998	1999	평균	
	기상관측소		.1_2555553	203.9	187.0	182.0	166.0	179.25	183.63 ± 12.3	
	취수구 ^{주1)}			155.9	158.0	184.0	178.0	164.50	168.08 ± 11.1	
	본부정문 ^{주1)}				_		_	101.75	101.75 ± 0.0	
제	정수장			173.1	171.0	183.0	158.0	169.75	170.97 ± 8.0	
한	배수구			182.0	195.0	209.0	187.0	204.00	195.40 ± 10.1	
	주사무실			181.0	169.0	183.0	189.0	190.75	182.55 ± 7.7	
구	계동 ^{주1)}			172.4	174.0	192.0	176.0	175.00	177.88 ± 7.2	
역					-	-	170.0			
	배수로 ^{주1)}							193.00	193.00 ± 0.0	
	본부후문 ^{주1)}				-		-	185.00	185.00 ± 0.0	
	청경사택 ^{주2)}			159.2	154.0	156.0	167.0		159.05 ± 5.0	
	청경사택 ^{주2)}			5	-	-	-	165.25	165.25 ± 0.0	
	가마미 ^{주1)}			144.4	131.0	145.0	155.0	121.00	139.28 ± 11.9	
	홍농서초교			151.0	148.0	142.0	160.0	164.25	153.05 ± 8.1	
	월곡			183.7	167.0	199.0	177.0	185.25	182.39 ± 10.5	
	칠암			188.4	180.0	207.0	204.0	189.50	193.78 ± 10.2	
	우봉			204.1	172.0	198.0	198.0	189.50	192.32 ± 11.2	
	상삼			210.7	206.0	222.0	201.0	216.00	211.14 ± 7.4	
	하삼			213.3	194.0	214.0	209.0	208.75	207.81 ± 7.2	
	덕산			214.9	199.0	223.0	194.0	206.50	207.48 ± 10.5	
	홍농사택			164.9	161.0	173.0	173.0	185.00	171.38 ± 8.3	
	몽냉기			179.6	175.0	192.0	173.0	195.25	182.97 ± 9.0	
	신자룡			236.2	214.0	236.0	214.0	222.25	224.49 ± 9.9	
	자갈금			223.8	194.0	220.0	203.0	212.75	210.71 ± 11.0	
	명당			216.0	195.0	218.0	191.0	207.50	205.50 ± 10.9	
비	상석			285.6	275.0	294.0	261.0	278.75	278.87 ± 11.0	
제	안무실			224.0	203.0	234.0	210.0	216.50	217.50 ± 10.8	
한	자룡			221.8	203.0	218.0	204.0	214.00	212.16 ± 7.5	
	구시포			201.8	190.0	214.0	202.0	202.00	201.96 ± 7.6	
구	백수초교			197.9	190.0	206.0	201,0	193.25	197.63 ± 5.6	
역	신두암			237.8	210.0	231.0	225.0	226.50	226.06 ± 9.2	
	동명교회			200.1	178.0	202.0	197.0	188.50	193.12 ± 8.9	
	용대			206.9	176.0	200.0	202.0	192.25	195.43 ± 10.8	
	법성			167.2	149.0	166.0	157.0	186.25	165.09 ± 12.5	
	석남초교			216.0	187.0	211.0	198.0	197.75	201.95 ± 10.4	
	심포			229.5	207.0	231.0	211.0	212.75	218.25 ± 10.0	
	덕룡리			205.9	200.0	213.0	176.0	206.25	200.23 ± 12.8	
	삼덕초교			228.4	215.0	200.0	209.0	214.00	213.28 ± 9.2	
	송운동 ^{주3)}			238.7	206.0	208.0	222.0		218.68 ± 13.1	
	상하면 ^{주3)}			-			-	215.25	215.25 ± 0.0	
	용사			184.5	161.0	184.0	187.0	181.75	179.65 ± 9.5	
	신산동			251.0	229.0	251.0	234.0	228.75	238.75 ± 10.2	
	공음중학교			218.3	192.0	223.0	219.0	210.50	212.56 ± 11.0	
	송정			252.7	223.0	251.0	236.0	241.00	240.74 ± 10.8	
	나성초교			190.2	166.0	183.0	187.0	186.50	182.54 ± 8.6	

표 2.8-3 열형광선량계(TLD)에 의한 공간집적선량(계속)

7 H	בר ור ב	위	위치		공간집적선량(μGy/91일)							
구분	조사지점	방위	거리 (km)	1995	1996	1997	1998	1999	평균			
固	길룡리			266.5	234.0	271.0	250.0	258.25	255.95 ± 13.1			
제	입정리			216.4	180.0	208.0	201.0	199.50	200.98 ± 12.1			
한 구	영광			201.0	203.0	244.0	225.0	215.50	217.70 ± 15.8			
역 -	고창	-		188.6	171.0	197.0	198.0	198.25	190.57 ± 10.4			

- 주1) '99.7월부터 취수구, 계동, 가마미는 각각 본부정문, 배수로, 본부후문으로 측정지점이 변경됨.
- 주2) 조사계획 개정('99.2.27 과기부 승인)에 따라 청경사택은 부지내부(제한구역)에서 부지 외부(비제한구역)
- 주3) '99년부터 송운동에서 상하면으로 변경.

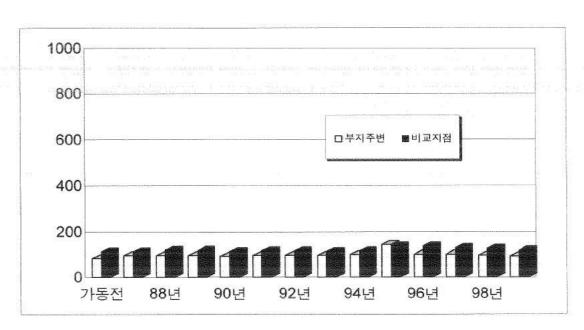


그림 2.8-1 환경방사선감시기에 의한 공간선량률(연도별)

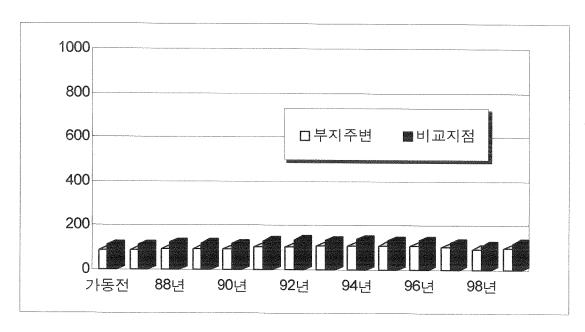


그림 2.8-2 휴대용계측기에 의한 공간선량률(연도별)

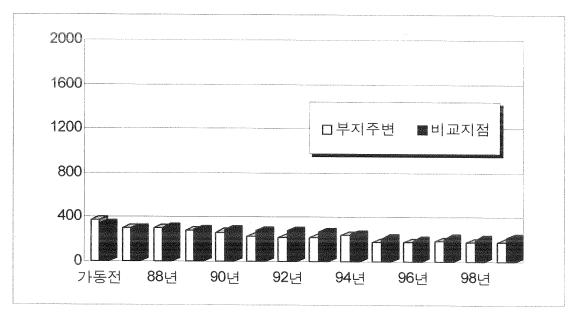


그림 2.8-3 열형광선량계(TLD)에 의한 공간집적선량률(연도별)

2.8.2 환경방사능

가. 공기 중 시료

1) 공기 중 미립자

가) 공기 중 미립자의 전베타 방사능

공기 중 미립자에 대한 전베타방사능은 부지주변 8곳과 비교지점 2곳에 설치되어 있는 연속대기시료 채집기에 직경 5cm의 유리섬유여과지를 장착하고 공기량이 주당 300㎡ 이상이되도록 하여 주1회 시료를 채집한 후 라돈 계열의 자연감쇄를 위해 약 72시간 방치시킨 후저준위알파·베타계측기(TENNELEC Model LB-5100W)로 분석하였다. 분석결과 부지주변 8곳에서 5년간 평균 방사능농도가 홍농서초교에서 최대값(1.33 mBq/㎡)을, 계동에서 최소값 (1.02 mBq/㎡)을 나타내었고, 비교지점 2곳을 포함한 전지점에서 평상범위 이내의 값을 보여 원전가동에 의한 변동사항은 발견되지 않았다. 그림 2.8-4에는 연도별 공기중 미립자의전베타 방사능을 그래프로 나타내었다. 최근 5년 간 조사결과를 종합 정리한 결과는 표 2.8-4와 같다.

표 2,8-4 공기 중 미립자의 전베타 방사능

-7 14	- 1 -1 -1	Control of the Control	위치		측정	결과(mB	(q/m ^t)		rs4 ⊐
구분	조사지점	방위	거리(km)	1995	1996	1997	1998	1999	평균
	취수구 ^{주1)}			1.21	1.47	0.91	1.34	1.30	1.25±0.19
	본부정문 ^{주1)}			_	=7	-	1000	1.18	1.18±0.00
	계동 ^{주1)}			0.95	1.07	0.62	1.25	1.20	1.02±0.22
	배수로 ^{주1)}			1.00	-	-	-	1.21	1.21±0.00
부지 주변	청경사택			1.13	1.47	0.90	1.28	1.20	1.20±0.19
	주사무실			1.14	1.06	0.85	1.37	1.32	1.15±0.19
.8	가마미 ^{주1)}			1.21	1.37	0.84	1.28	1.23	1.19±0.18
	본부후문 ^{주1)}				-	-	-	1.18	1.18±0.00
	홍농서초교			1.67	1.28	0.94	1.30	1.45	1.33±0.24
	홍농			1.21	1.15	0.74	1.25	1.47	1.16±0.24
	법성			1.46	1.26	0.97	1.29	1.42	1.28±0.17
비교	영광			1.38	1.24	0.93	1.37	1.43	1.27 ± 0.18
지점	고창			1.43	1.31	1.25	1.31	1.45	1.35±0.08

주1) '99.7월부터 취수구, 계동, 가마미는 각각 본부정문, 배수로, 본부후문으로 측정지점이 변경됨.

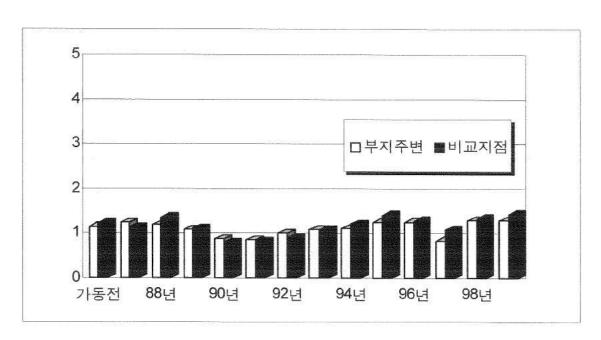


그림 2.8-4 공기중미립자의 전베타방사능(연도별)

나) 공기 중 미립자의 감마동위원소

전베타방사능 측정지점과 동일한 10개 지점에서 주1회 채집된 여과지를 모아서 월 1회 20 ml Particulate Filter Canister에 넣어 감마 핵종분석장비(Canberra Model S-85)를 이용하여 시료 당 30,000초씩 측정하였다. 분석결과 핵분열 생성핵종 및 인공방사성핵종은 10개 지점 전 지역에서 검출되지 않았고 자연핵종인 Be-7만이 평상범위 수준으로 검출되었다. 공기중 미립자의 감마동위원소 분석시 검출된 Be-7은 대기중에서 우주선에 의하여 N-14, O-16으로부터 생성되는 자연방사성핵종이다. 최근 5년 간 조사결과를 종합 정리한 결과는 표 2.8-5와 같다.

다) 공기 중 미립자의 스트론튬-90 방사능

스트론튬에 대한 방사능농도는 과학기술부고시 제 96-31호에 의거 환경조사계획에 따라 스트론튬에 대한 분리 및 방사능농도 측정을 수행하지 않았다.

조사	위치							
고사 지점 방위 거리 (km)	핵종	1995	1996	1997	1998	1999	평균	
		Cs-134	< 0.109	< 0.055	< 0.160	< 0.120	< 0.081	< 0.160
취		Cs-137	< 0.110	< 0.062	< 0.200	< 0.135	< 0.081	< 0.200
수		Co-60	-	-	-	< 0.135	< 0.107	< 0.135
100		Ru-106	92	_	=	< 1.020	< 0.718	< 1.020
구		Ce-144	2 	= 1	-	< 0.535	< 0.266	< 0.535
		Be-7	4.910	7.440	6.070	4.313	8.040	$6.155 \pm 1.$

표 2.8-5 공기 중 미립자의 감마동위원소

표 2.8-5 공기 중 미립자의 감마동위원소(계속)

조사	위	치	-0-7		측정	결과(mBo	g/m')		-3 -7
지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	평균
25.45000			Cs-134	-	-	16 1 7.	-	< 0.063	< 0.063
본			Cs-137	_	-	-	-	< 0.064	< 0.064
부			Co-60	-	-	-	-	< 0.076	< 0.076
정			Ru-106	-	-	7. 	-	< 0.502	< 0.502
문			Ce-144	-	· =	-		< 0.227	< 0.227
			Be-7		-	-	- Z.	5.010	5.010 ± 0.00
			Cs-134	< 0.060	< 0.109	< 0.150	< 0.107	< 0.074	< 0.150
			Cs-137	< 0.066	< 0.150	< 0.160	< 0.131	< 0.085	< 0.160
계			Co-60	-	-	-	< 0.133	< 0.111	< 0.133
동			Ru-106	122	_	=7.	< 0.991	< 0.705	< 0.991
			Ce-144	-	1-		< 0.511	< 0.277	< 0.511
			Be-7	2.520	4.870	3.380	4.648	7.530	4.590 ± 1.70
			Cs-134		1.50.1	77/2	-	< 0.062	< 0.062
배			Cs-137	- Same			-	< 0.068	< 0.068
			Co-60	122	_	200	-	< 0.077	< 0.077
수			Ru-106			77E	-	< 0.541	< 0.541
로			Ce-144	19 22		20	-	< 0.245	< 0.245
			Be-7	. E	750	- E4	-	5.507	5.507 ± 0.00
			Cs-134	< 0.056	< 0.063	< 0.130	< 0.117	< 0.080	< 0.130
청			Cs-137	< 0.053	< 0.068	< 0.140	< 0.126	< 0.087	< 0.140
경			Co-60	= 11	- 281	NAME OF STREET	< 0.140	< 0.114	< 0.140
사			Ru-106	Z -	2 10 TO 10 10 10	-	< 1.020	< 0.726	< 1.020
택			Ce-144	·		-	< 0.517	< 0.274	< 0.517
			Be-7	4.670	9.970	4.430	5.128	6.354	6.110 ± 2.04
			Cs-134	< 0.062	< 0.097	< 0.100	< 0.116	< 0.079	< 0.116
주			Cs-137	< 0.061	< 0.134	< 0.120	< 0.134	< 0.085	< 0.134
사			Co-60		- AMERICAN	-	< 0.133	< 0.113	< 0.133
무			Ru-106		-	-	< 0.990	< 0.727	< 0.990
실			Ce-144			***	< 0.515	< 0.274	< 0.515
-			Be-7	3.210	5.530	5.650	5.139	7.142	5.334 ± 1.26
				< 0.054	< 0.095	< 0.100	< 0.118	< 0.079	< 0.118
ાં				< 0.058	< 0.134	< 0.120	< 0.141	< 0.083	< 0.141
가			Co-60	-2	=	-	< 0.128	< 0.115	< 0.128
नि			Ru-106	-	-	-	< 0.985	< 0.719	< 0.985
미			Ce-144	1	_	-	< 0.526	< 0.282	< 0.526
			Be-7	2.920	13.710	4.690	4.796	8.698	6.963 ± 3.87

^{※ &#}x27;99.7월부터 취수구, 계동은 각각 본부정문, 배수로로 측정지점이 변경됨.

^{※ &#}x27;99.7월부터 가마미는 본부후문으로 측정지점이 변경됨.

표 2.8-5 공기 중 미립자의 감마동위원소(계속)

본	
문	균
부 Co-60	****
후 Ru-106	
문 Ce-144	
용는-7 5.890 5.890 중 CS-134 < 0.051 < 0.088 < 0.170 < 0.112 < 0.077 < 0.170 당 CS-137 < 0.048 < 0.132 < 0.190 < 0.126 < 0.076 < 0.190 지구	
통 Cs-134 < 0.051 < 0.088 < 0.170 < 0.112 < 0.077 < 0.170 Cs-137 < 0.048 < 0.132 < 0.190 < 0.126 < 0.076 < 0.190 Co-60	
등	± 0.00
지	
지	
표 Ru-106	
Be-7 3.860 9.340 6.280 5.660 6.907 6.409 Cs-134 < 0.049 < 0.107 < 0.160 < 0.117 < 0.075 < 0.160 Cs-137 < 0.053 < 0.131 < 0.190 < 0.127 < 0.088 < 0.190 중 Co-60 < 0.987 < 0.784 < 0.987 Ce-144 < 0.088 < 0.112 < 0.128 Be-7 2.450 9.910 5.130 5.710 7.293 6.099 Cs-134 < 0.039 < 0.088 < 0.110 < 0.110 < 0.077 < 0.110 Cs-137 < 0.055 < 0.129 < 0.120 < 0.129 < 0.079 < 0.129 Be-7 3.580 9.500 5.230 5.333 7.687 6.266 Cs-134 < 0.048 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.070 < 0.123 < 0.089 < 0.200 Gs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Cc-144 < 0.054 < 0.010 < 0.121 < 0.121 Ru-106 < 0.054 < 0.072 < 0.170 < 0.123 < 0.089 < 0.200 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Cc-144 < 0.054 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Cc-144 < 0.054 < 0.057 < 0.170 < 0.123 < 0.085 < 0.200 Cc-144 < 0.054 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Cc-144 < 0.054 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Cc-144 < 0.054 < 0.061 < 0.000 < 0.133 < 0.089 < 0.200 Cc-144 < 0.054 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Co-60 < 0.121 < 0.110 < 0.121 Ru-106 < 0.0542 < 0.272 < 0.542	
Cs-134 < 0.049 < 0.107 < 0.160 < 0.117 < 0.075 < 0.160 Cs-137 < 0.053 < 0.131 < 0.190 < 0.127 < 0.088 < 0.190 Co-60 < 0.128 < 0.112 < 0.128 Ru-106 < 0.987 < 0.784 < 0.987 Ce-144 < 0.547 < 0.274 < 0.547 Be-7 2.450 9.910 5.130 5.710 7.293 6.099 Cs-134 < 0.039 < 0.088 < 0.110 < 0.110 < 0.077 < 0.110 Cs-137 < 0.055 < 0.129 < 0.120 < 0.129 < 0.079 < 0.129 Co-60 < 0.541 < 0.275 < 0.541 Ru-106 < 0.541 < 0.275 < 0.541 Be-7 3.580 9.500 5.230 5.333 7.687 6.266 Cs-134 < 0.048 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.200 < 0.123 < 0.089 < 0.200 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Cs-144 < 0.541 < 0.170 < 0.121 < 0.110 < 0.121 Ru-106 < 0.542 < 0.726 < 1.030 Ce-144 < 0.054 < 0.050 < 0.726 < 1.030 Ce-144 < 0.542 < 0.726 < 0.542	
용	± 1.78
중	
장 Ru-106 < 0.987 < 0.784 < 0.987 Ce-144 < 0.547 < 0.547 < 0.547	
Ce-144 < 0.547 < 0.274 < 0.547 Be-7 2.450 9.910 5.130 5.710 7.293 6.099 Cs-134 < 0.039 < 0.088 < 0.110 < 0.110 < 0.077 < 0.110 Cs-137 < 0.055 < 0.129 < 0.120 < 0.129 < 0.079 < 0.129 Co-60 < 0.135 < 0.114 < 0.135 Ru-106 < 1.020 < 0.743 < 1.020 Ce-144 < 0.541 < 0.275 < 0.541 Be-7 3.580 9.500 5.230 5.333 7.687 6.266 Cs-134 < 0.048 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 G 0.60 < 0.121 < 0.110 < 0.121 Ru-106 < 0.121 < 0.110 < 0.121 Ru-106 < 0.542 < 0.542 < 0.272 < 0.542	
Be-7 2.450 9.910 5.130 5.710 7.293 6.099 Cs-134 < 0.039 < 0.088 < 0.110 < 0.110 < 0.077 < 0.110 Cs-137 < 0.055 < 0.129 < 0.120 < 0.129 < 0.079 < 0.129 Co-60 < 0.135 < 0.114 < 0.135 Ru-106 < 0.541 < 0.275 < 0.541 Be-7 3.580 9.500 5.230 5.333 7.687 6.266 Cs-134 < 0.048 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Co-60 < 0.121 < 0.110 < 0.121 Ru-106 < 0.121 < 0.110 < 0.121 Ru-106 < 0.542 < 0.542 < 0.572 < 0.542	
Cs-134 < 0.039 < 0.088 < 0.110 < 0.110 < 0.077 < 0.110 Cs-137 < 0.055 < 0.129 < 0.120 < 0.129 < 0.079 < 0.129 Co-60 < 0.135 < 0.114 < 0.135 Ru-106 < 0.541 < 0.275 < 0.541 Be-7 3.580 9.500 5.230 5.333 7.687 6.266 Cs-134 < 0.048 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Co-60 < 0.121 < 0.110 < 0.121 Ru-106 < 0.542 < 0.272 < 0.542	
법	± 2.46
법 Co-60 < 0.135 < 0.114 < 0.135 Ru-106 < 1.020 < 0.743 < 1.020 Ce-144 < 0.541 < 0.275 < 0.541 Be-7 3.580 9.500 5.230 5.333 7.687 6.266 Cs-134 < 0.048 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Co-60 < 0.121 < 0.110 < 0.121 Ru-106 < 0.542 < 0.542 < 0.542	
정 Ru-106 < 1.020 < 0.743 < 1.020 Ce-144 < 0.541 < 0.275 < 0.541 Be-7 3.580 9.500 5.230 5.333 7.687 6.266 Cs-134 < 0.048 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Co-60 < 0.121 < 0.110 < 0.121 Ru-106 < 1.030 < 0.726 < 1.030 Ce-144 < 0.542 < 0.272 < 0.542	
Ce-144 < 0.541 < 0.275 < 0.541 Be-7 3.580 9.500 5.230 5.333 7.687 6.266 Cs-134 < 0.048 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 영 Co-60 < 0.121 < 0.110 < 0.121 Ru-106 < 1.030 < 0.726 < 1.030 Ce-144 < 0.542 < 0.272 < 0.542	
Be-7 3.580 9.500 5.230 5.333 7.687 6.266 Cs-134 < 0.048 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Co-60 < 0.121 < 0.110 < 0.121 Ru-106 < 1.030 < 0.726 < 1.030 Ce-144 < 0.542 < 0.272 < 0.542	
Cs-134 < 0.048 < 0.057 < 0.170 < 0.123 < 0.082 < 0.170 Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Co-60 < 0.121 < 0.110 < 0.121 Ru-106 < 1.030 < 0.726 < 1.030 Ce-144 < 0.542 < 0.272 < 0.542	
Cs-137 < 0.058 < 0.061 < 0.200 < 0.133 < 0.089 < 0.200 Co-60 < 0.121 < 0.110 < 0.121 Ru-106 < 1.030 < 0.726 < 1.030 Ce-144 < 0.542 < 0.272 < 0.542	± 2.08
영 Co-60 < 0.121 < 0.110 < 0.121 광 Ru-106 < 1.030 < 0.726 < 1.030 Ce-144 < 0.542 < 0.272 < 0.542	
광 Ru-106 < 1.030 < 0.726 < 1.030 Ce-144 < 0.542 < 0.272 < 0.542	
광 Ru-106 < 1.030 < 0.726 < 1.030 Ce-144 < 0.542 < 0.272 < 0.542	
Be-7 3.400 9.930 6.090 4.918 7.058 6.279	
	± 2.20
Cs-134 < 0.049 < 0.042 < 0.210 < 0.118 < 0.077 < 0.210	
Cs-137 < 0.050 < 0.058 < 0.260 < 0.141 < 0.083 < 0.260	
고 Co-60 < 0.128 < 0.108 < 0.128	
창 Ru-106 < 0.994 < 0.711 < 0.994	
Ce-144 < 0.533 < 0.293 < 0.533	
	± 3.83

2) 공기 중 방사성옥소

공기 중 대기시료 채집기로 주300㎡ 이상의 공기를 방사성옥소 채취용 활성탄 필터에 연속포집한 후 주1회 회수하여 감마핵종분석기를 이용하여 분석하였다. 분석결과 전 지점에서 방사성옥소는 검출되지 않았다. 최근 5년 간 조사결과를 종합 정리한 결과는 표 2.8-6과 같다.

표 2.8-6 공기 중 방사성옥소

	위	치				추?	정결]과(mB	q/m	')				
조사지점	방위	거리 (km)		1995		1996		1997		1998		1999		평균
취수구 ^{주1)}			<	0.350	<	29.100	<	1.400	<	2.160	<	1.740	<	29.10
본부정문 ^{주1)}				S=		-		-		-	<	1.410	<	1.410
계동 ^{주1)}			<	0.380	<	15.300	<	1.340	<	2,380	<	1.990	<	15.30
배수로 ^{주1)}				(-		:		-		-	<	1.420	<	1.420
청경사택	ii L		<	0.380	<	33.500	<	1.840	<	2.570	<	1.860	<	33.50
주사무실	¢		<	0.420	<	15.500	<	1.490	<	2.680	<	1.920	<	15.50
가마미 ^{주1)}			<	0.320	<	28.000	<	2.420	<	4.470	<	1.950	<	28.00
본부후문 ^{주1)}				77		1077		177		57.4	<	1.500	<	1.500
홍농서초교			<	0.380	<	17.300	<	1.550	<	2.200	<	2.150	<	17.30
홍농			<	0.360	<	28.500	<	1.640	<	2.870	<	2.010	<	28.50
법성			<	0.340	<	15.700	<	1.480	<	2.670	<	2.220	<	15.70
영광			<	0.280	<	34.300	<	1.590	<	2.690	<	2.270	<	34.30
고창			<	0.350	<	16.600	<	1.840	<	2.530	<	1.970	<	16.60

주1) '99.7월부터 취수구, 계동, 가마미는 각각 본부정문, 배수로, 본부후문으로 측정지점이 변경됨.

나. 육상시료

1) 토양

가) 토양의 전베타 방사능

토양시료에 대한 전베타방사능은 공기중미립자 채취지점 10개소와 몽냉기, 동명초교, 양지, 왕재, 월안의 5개 지점에서 월1회의 주기로 각 지점에서 표충토(깊이 : 0~5 cm)를 2kg 이상씩 채취하여 전처리과정을 거친 후 정확히 200mg을 취하여 계측용 시료접시(Planchet)에 담아 저준위 알파, 베타 계수기로 분석하였다. 분석결과 2년간 평균치가 최고치를 보인지역은 영광으로 1.48 kBq/kg-dry 였고, 최소치를 보인지역은 양지로 0.60 kBq/kg-dry 이었다. 1996년도 전체 평균값은 0.882 kBq/kg-dry 로서 가동전 측정치 평균값 0.91 kBq/kg-dry 과 비교하여 비슷한 수준을 보이고 있다. 한편 1997년 이후 토양의 전베타 방사능 분석은 과기부고시 96-3I호에 의거해서 분석항목에서 제외되었다. 최근 3년 간 조사결과를 종합 정리한 결과는 표 2.8-7과 같다.

나) 토양의 감마동위원소

토양시료에 대한 감마동위원소는 전베타 측정지점과 동일한 15개 지점에서 반기1회 시료를 채취하여 감마핵종분석장비를 이용하여 분석을 실시하였다. 과거 5년간 분석결과 인공방사성 핵종인 Cs-137이 불검출~36.2 Bq/kg-dry로 나타났으나 과거 3년간의 평상범위 수준

이다. Cs-137은 선진국의 핵실험과 체르노빌 원전사고에 의한 낙진의 영향으로 우리 나라를 포함한 전세계에서 검출되고 있는 핵종이다. 그 외에 인공핵종은 검출되지 않았고 천연핵종 인 K-40이 전지점에서 연간평균 369.5~1038.9 Bq/kg-dry로 검출되었다. 최근 5년간 조사결과를 종합 정리한 결과는 표 2.8-8과 같다.

표 2.8-7 토양의 전베타 방사능

		위치		측정결	과(Bq/k	g-dry)		-s4 -7.
조사지점	방위	거리(km)	1995	1996	1997	1998	1999	평균
취수구	11/2	·	1,240	730		_	-	985 ± 255
계동			1,690	670	-	-	-	1,180 ± 510
청경사택			1,570	910	=	_	_	1,240 ± 330
주사무실			1,800	565	-		_	1,183 ± 618
카마미			950	712		-	-	831 ± 119
홍농서초교			1,190	1,004	æ	-	-	1,097 ± 93
홍농			1,120	787	55,000	-		953 ± 167
법성			850	1,208	(1) (2)	10 (<u>9</u> a	-	1,029 ± 179
영광			1,710	1,244	-	-	-	1,477 ± 233
고창			1,020	920	- 	-		970 ± 50
몽냉기			890	688	-		-	789 ± 101
동명초교			820	1,502	-	-	<u>-</u>	1,161 ± 341
양지			510	694	-	_	_	602 ± 92
왕재			1,040	722	-	-		881 ± 159
월안			1,450	868	Page.	_	-	1,159 ± 291

^{※ 1997}년 이후에는 토양 중 전베타방사능 분석을 수행하지 않음.

표 2.8-8 토양의 감마동위원소

	위치	1		측정결]과(Bq/kg	g-dry)			
조사 지점	방위 (km	The same and the	1995	1996	1997	1998	1999	평	₹
·\	1/12121	Co-60	_	< 1.45	< 1.20	< 0.91	< 0.60	< 1.45	
취		I-131	-		< 1.38	< 1.05	< 0.61	< 1.38	
수		Cs-134	< 1.96	< 1.22	< 1.10	< 1.05	< 0.78	< 1.96	
구		Cs-137	< 1.43	< 1.40	< 1.15	0.30	< 0.67	0.30	
		K-40	1320.0	1161.9	1	657.0	595.3	968.7	± 288.8
		Co-60	-	< 1.50	< 0.77	< 1.06	< 0.89	< 1.50	
-a)î		I-131	-	-	< 1.32	< 1.33	< 0.86	< 1.33	
계		Cs-134	< 1.4	< 1.29	< 0.83	< 1.07	< 1.03	< 1.40	
동		Cs-137	15.2	< 1.23	< 0.76	6.75	< 0.88	10.98	± 4.22
		K-40	1230.0	726.3	823.9	986.1	1428.1	1038.9	± 258.7
청		Co-60	-	< 1.15	< 0.58	< 0.82	< 0.88	< 1.15	0.W.0V.0
경		I-131	-	l s e	< 1.30	< 1.03	< 1.04	< 1.30	
		Cs-134	< 1.27	< 1.17	< 0.93	< 0.97	< 0.97	< 1.27	
사		Cs-137	< 1.08	< 0.99	< 1.02	0.06	< 0.81	0.06	
택		K-40	718.0	755.7	810.5	654.2	1173.5	822.4	\pm 182.8
주		Co-60	-	< 1.48	< 1.13	< 0.99	< 0.70	< 1.48	
사		I-131	hero n erane	STATESTA	< 1.60	< 0.86	< 1.14	< 1.60	
		Cs-134	< 1.27	< 1.28	< 1.26	< 1.13	< 0.82	< 1.28	
무		Cs-137	< 1.09	< 1.30	0.36	0.40	3.36	1.37	\pm 1.41
실		K-40	732.0	1499.5	1004.9	974.0	881.7	1018.4	\pm 258.6
		Co-60		< 1.31	< 0.32	< 0.42	< 0.40	< 1.31	
가		I-131	-		< 0.63	< 0.52	< 0.33	< 0.63	
마		Cs-134	< 1.73	< 1.14	< 0.67	< 0.61	< 0.61	< 1.73	
미		Cs-137	< 1.38	1.29	< 0.31	1.30	0.28	0.96	\pm 0.48
		K-40	739.0	552.5	601.4	593.6	539.0	605.1	± 71.0
충		Co-60	-	< 1.08	< 0.35	< 0.81	< 0.31	< 1.08	
농		I-131	-	-	< 0.76	< 0.59	< 1.36	< 1.36	
서		Cs-134	< 0.783	< 1.03	< 0.77	< 0.77	< 0.63	< 1.03	
丞		Cs-137	0.63	2.32	< 2.90	2.40	25.14	7.62	\pm 10.14
N		K-40	690.0	509.5	664.2	659.7	507.6	606.2	\pm 80.4
		Co-60		< 1.17	< 0.93	< 1.01	< 0.57	< 1,17	×==11410000
ক		I-131	-	was:	< 1.94	< 1.30	< 1.10	< 1.94	
홍		Cs-134	< 1.79	< 1.05	< 1.15	< 1.11	< 0.68	< 1.79	
농		Cs-137	< 1.29	3.50	< 1.05	1.06	< 0.53	2.28	\pm 1.22
		K-40	1180.0	561.5	742.8	719.3	702.0	781.1	± 209.2
		Co-60	-	< 1.25	< 0.44	< 0.50	< 0.34	< 1.25	
법		I-131	-	~	< 1.22	< 0.86	< 0.80	< 1.22	
		Cs-134	< 1.34	< 5.09	< 0.89	< 0.72	< 0.78	< 5.09	
성		Cs-137	< 1.15	3.52	< 0.50	0.45	10.41	4.79	\pm 4.16
		K-40	784.0	607.3	624.3	882.7	599.7	699.6	\pm 113.9

표 2.8-8 토양의 감마동위원소(계속)

조사	위치				측정결	과(Bq/k	g-dry)			
지점	방위	H리 km)	해종	1995	1996	1997	1998	1999	평	ਹੋ
광	1.55	1111/	Co-60	-	-	< 0.30	< 0.68	< 0.29	< 0.68	
주			I-131	-	-	< 0.44	< 0.35	< 0.47	< 0.47	
호			Cs-134	_	_	< 1.72	< 0.78	< 0.77	< 1.72	77
룡			Cs-137	_	_	< 0.22	< 0.34	< 0.30	< 0.28	
동			K-40	_	<u>~</u>	689.2	696.6	779.0	721.6	± 40.7
			Co-60		< 1.47	< 0.52	< 0.47	< 0.39	< 1.47	888.V.C 11 11 11 11 11 11 11 11 11 11 11 11
			I-131		2.7.7	< 0.54	< 0.45	< 0.99	< 0.99	
<u> </u>			100 10000000000000000000000000000000000	< 1.65	< 1.64	< 0.93	< 0.91	< 0.84	< 1.65	
창				< 1.15	7.76	< 2.00	2.92	14.25	8.31	± 4.64
			K-40	643.0	646.4	733.1	720.4	697.6	688.1	\pm 37.2
본			Co-60	(m)	-	-	-	< 0.53	< 0.53	
			I-131	-	-	-	-	< 0.84	< 0.84	
부			Cs-134	=	-	-		< 0.65	< 0.65	
정			Cs-137		-	-	-	1.37	1.37	
문			K-40	4	_	-	-	579.8	579.8	
449944			Co-60		0.7	-	-	< 0.54	< 0.54	
нļ			I-131	-	-	-	-	< 0.86	< 0.86	
宁			Cs-134	_	82	-	-	< 0.63	< 0.63	
呈			Cs-137	100	1.77	-	100	< 0.38	< 0.38	
			K-40	-			Sec.	617.9	617.9	
본			Co-60	The second	-	-	1 22	< 0.35	< 0.35	
부			I-131	-	-	-	-	< 0.85	< 0.85	
亨			Cs-134	-			-	< 0.27	< 0.27	
문			Cs-137	# 15T	5 3	0770	756	1.38	1.38	
T			K-40	-	-	-		655.5	655.5	
			Co-60	-	< 1.09	-	_	< 0.42	< 1.09	
영			I-131	- 0.05	- 1 00	-		< 1.22	< 1.22	
광			Cs-134	< 0.85	< 1.27	-	-	< 0.33	< 1.27	+ 105
			Cs-137	< 0.86	6.09	-	-	2.18 817.4	4.13 839.5	± 1.95 ± 119.9
			K-40	705.0	996.2	1-		017.4	< 1.18	△ 115.5
몽			Co-60 Cs-134	< 0.981	< 1.18 < 1.09				< 1.09	
냉			Cs-134	31.8	12.26			_	22.03	土
기			K-40	392.0	401.0			1446	396.5	± 4.5
			Co-60	- 332.0	< 1.12	+			< 1.12	
양			Cs-134	< 1.69	< 1.15	_	_	_	< 1.69	
지			Cs-137	40.9	31.51	_		-	36.20	± 4.70
(3)			K-40	392.0	378.3	_	-	:-	385.2	± 6.8
TE			Co-60		< 1.38	 -	1		< 1.38	
동명			Cs-134	< 2.01	< 1.42	-	-	8 242	< 2.01	
초			Cs-137	29.2	27.76	-	-	-	28.48	± 0.72
亚			K-40	597.0	468.0	_	_	20	532.5	± 64.5

표 2.8-8 토양의 감마동위원소(계속)

Z 1)	위	치			측정결	과(Bq/kı	g-dry)		
조사 지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	평균
			Co-60		< 1.19	7-	-	-	< 1.19
왕			Cs-134	< 1.43	< 1.32	:	-	-	< 1.43
재			Cs-137	35.3	10.30	-	-	-	22.80 ± 12.50
- 19 10 10 1			K-40	315.0	424.1	-	. 	- -	369.5 ± 54.5
-A			Co-60		< 1.33	7.	9 7 4	724	< 1.33
월			Cs-134	< 2.08	< 1.26		-	-	< 2.08
안			Cs-137	< 1.56	9.18	-	-	-	9.18
			K-40	1420.0	442.8	-0	-		931.4 ± 488.6

- ※ 광주 오룡동 지점은 97년부터 분석하였음.
 ※ 몽냉기, 양지, 동명초교, 왕재 및 월안 지점은 96년까지 분석하였음.
 ※ 본부정문, 배수로, 본부후문 지점은 99년부터 분석하였음.

다) 토양의 스트론튬-90 방사능

Cs-137이 과학기술부 고시(제96-31호)상의 검출하한치 이하로 검출된 경우에는 스트론튬 -90의 분석을 수행하지 않고 Cs-137이 고시상의 검출하한치인 5 Bq/kg-dry 이상인 경우에 는 스트론튬-90을 분석하였다. 토양에 대한 스트론튬-90의 분석을 위해 채취한 시료를 방사 화학 분리과정을 거친 후 저준위 알파·베타계측기로 분석하였다. 분석결과 0.04~1.48 Bq/kg-dry로 나타났으나, 스트론튬-90은 선진국의 핵실험 등에 의해 Cs-137과 동반하여 검 출되는 핵종이다. 최근 5년간 조사결과를 종합 정리한 결과는 표 2.8-9와 같다.

표 2.8-9 토양의 스트론튬 방사능

1 -1 -1		위치		측정:	결과(Bo	g/kg-dry)			
조사지점	방위	거리(km)	1995 ^{₹1)}	1996	1997	1998	1999	평균	
계동			0.44	-	-	-	-	0.44	
청경사택 ^{주2)}			-	-	0.27	< 0.14	< 0.22	0.27	
홍농사택 ^{주2)}			925	<u> (22)</u>	0.20	0.16	< 0.34	0.18 ± 0.02	
광주오룡동 ^{주2)}				-	0.04	< 0.10	< 0.09	0.04	
고창			- 1	0.23	-		-	0.23	
영광			-	1.48	-	-	< 0.03	1.48	
몽냉기			0.15	0.38		_	-	0.27 ± 0.12	
양지			1.24	0.86	-		-	1.05 ± 0.19	
동명초교			1.04	0.84	-		-	0.94 ± 0.10	
왕재			0.78	0.31	-	J		0.55 ± 0.24	
월안			-	0.47	-			0.47	

- ※ 96년도의 경우 2/4분기부터 부지외부는 환경방사능 조사용역기관에서 수행하기에 부지내부지점과 부지외부 1개 지점만을 선별하여 분석함.
- 주1) 95년도의 경우 상반기중 5개 지점에서만 Cs-137이 검출하한값 이상으로 검출되어 분석을 실시하였음.
- 주2) 청경사택, 홍농사택, 광주오룡동은 97년 하반기부터 시행한 Sr-90 분석지점임.

2) 솔잎시료

가) 솔잎의 감마동위원소

솔잎에 대한 감마동위원소 분석을 위해 부지주변 4곳(계동, 양지, 흥농사택, 동명초교)과 비교지점 1곳(97년이후 영광에서 광주임곡동으로 변경)에서 반기1회 채취한 시료를 건조·분쇄 후 감마핵종분석기로 분석하였다. 분석결과 인공핵종은 전혀 검출되지 않았고, 천연핵종인 K-40은 전지점에서 57.6~101.4 Bq/kg-Fresh로 검출되었다. 최근 5년간 조사결과를 종합 정리한 결과는 표 2.8-10과 같다.

나) 솔잎의 스트론튬-90 방사능

스트론튬-90의 분석을 위해 발전소 부지주변 1곳(양지)과 비교지점 1곳(광주 입곡교)에서 반기 1회 채취한 시료를 방사화학 분리과정을 거친 후 저준위 알파·베타계측기로 분석하였다. 분석결과 1997년에 양지와 광주임곡동에서 각각 0.015, 0.022 Bq/kg-Fresh 가 검출되었고, 그 이후로는 전지점에서 Sr-90은 검출되지 않았다. 최근 5년간 조사결과를 종합 정리한결과는 표 2.8-11과 같다.

표 2.8-10 솔잎의 감마동위원소

조사	위치	angeronia i		측정결	과(Bq/kg	g-fresh)	Malhartais Atrica		
지점	방위 (km)	핵종	1995	1996	1997	1998	1999	স্ত	균
		Co-60		-0.70	< 0.49	< 0.26	< 0.34	< 0.49	
-11k		I-131	1 -		< 7.19	< 0.28	< 0.24	< 7.19	
계		Cs-134	< 0.40	< 0.52	< 0.52	< 0.21	< 0.23	< 0.52	
동		Cs-137	< 0.40	< 0.62	< 0.53	< 0.21	< 0.26	< 0.62	
		K-40	38.5	98.3	167.1	89.9	113.4	101.4	\pm 41.4
		Co-60		-	< 0.52	< 0.21	< 0.32	< 0.52	
0)		I-131	i nen	745 1	< 1.82	< 0.48	< 0.41	< 1.82	
양		Cs-134	< 0.67	< 0.51	< 0.49	< 0.25	< 0.24	< 0.67	
지		Cs-137	< 0.37	< 0.57	< 0.49	< 0.19	< 0.28	< 0.57	
		K-40	29.0	94.7	143.0	61.3	78.4	81.3	\pm 37.8
		Co-60		Taker .	< 0.16	< 0.09	< 0.18	< 0.18	5.00
홍		I-131	-	-	< 0.20	< 0.45	< 0.42	< 0.45	
농		Cs-134	< 0.65	< 0.46	< 0.34	< 0.24	< 0.19	< 0.65	
사		Cs-137	< 0.48	< 0.57	< 0.55	< 0.06	< 0.17	< 0.57	
태		K-40	28.2	108.8	150.7	87.7	116.9	98.4	± 40.5
		Co-60	-	-	< 0.65	< 0.16	< 0.14	< 0.65	
동		I-131	-	_	< 0.26	< 0.28	< 0.41	< 0.41	
명		Cs-134	< 0.26	< 0.50	< 0.41	< 0.23	< 0.17	< 0.50	
초		Cs-137	< 0.32	< 0.52	< 0.30	< 0.12	< 0.13	< 0.52	
교		K-40	44.7	116.2	148.6	66.6	94.6	94.1	\pm 36.5

표 2.8-10 솔잎의 감마동위원소(계속)

조사	위	치			측정검	直과(Bq/ks	g-fresh)	147.4		
지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	평균	
광		4	Co-60	-	-	< 0.30	< 0.16	< 0.20	< 0.30	
주			I-131	-	-	< 1.63	< 0.28	< 0.46	< 1.63	
임			Cs-134	-	-	< 0.63	< 0.19	< 0.21	< 0.63	
곡			Cs-137		1 = 007	< 0.30	< 0.12	< 0.19	< 0.30	
동			K-40	-	-	175.5	100.9	82.9	119.7 ± 40.1	
			Co-60	-	-	-	-	\\	< 0.00	
영			I-131	_	12	-	2		< 0.00	
199			Cs-134	< 0.35	< 0.52	-	9 <u>—</u> 7	-	< 0.52	
광			Cs-137	< 0.45	< 0.57	1.5	·=	-	< 0.57	
0.00			K-40	35.9	79.4		-	fre-	57.6 ± 21.8	

^{* 95}년, 96년도 분석핵종 중 Co-60, I-131은 분석을 수행하지 않음.

표 2.8-11 솔잎의 스트론튬 방사능

7 1) -1 2)		위치		측정집	V2 -7			
조사지점	방위	거리(km)	1995 ^{₹1)}	1996 ^{₹1)}	1997	1998	1999	평균
양지			-		0.015	< 0.060	< 0.030	0.015 ± 0.0
광주입곡동				8. = 300 <u>.</u> 100 5.	0.022	< 0.040	< 0.030	0.022 ± 0.0

주1) 95년, 96년도에는 과기부고시 85-5호에 의해 감마핵종 분석결과 Cs-137이 검출되지 않았으므로 분석을 수행하지 않음.

3) 쑥시료

가) 쑥의 감마동위원소

쑥시료에 대한 전베타방사능은 부지주변 2곳(홍농서초교, 홍농사택)과 비교지점 1곳(광주임곡교)에서 시료를 채취하여 분석하였다. 분석결과 인공핵종은 전혀 검출되지 않았고, 천연핵종인 K-40은 전지점에서 156.2~165.408 Bq/kg-Fresh로 검출되었다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-12와 같다.

^{※ 97}년도부터 채취지점이 영광에서 광주임곡동으로 변경됨.

표 2.8-12 쑥의 감마동위원소¹⁾

Z 1] z] zi	위치	划る	측정	결과(Bq/kg-	fresh)	ᆏ그
조사지점	방위 거리(km)	핵종	1997	1998	1999	평균
		Co-60	< 0.776	< 0.325	< 0.318	< 0.776
* \-		I-131	< 0.763	< 0.393	< 0.439	< 0.763
홍농 서초교		Cs-134	< 0.529	< 0.247	< 0.245	< 0.529
시조표		Cs-137	< 0.611	< 0.274	< 0.272	< 0.611
		K-40	35.088	264.235	196.900	165.408 ± 96.2
		Co-60	< 0.126	< 0.204	< 0.096	< 0.204
		I-131	< 0.080	< 0.183	< 0.208	< 0.208
홍농사택		Cs-134	< 0.119	< 0.138	< 0.138	< 0.138
		Cs-137	< 0.073	< 0.076	< 0.292	< 0.292
	4.0	K-40	34.550	245.065	199.200	159.605 ± 90.4
		Co-60	< 0.139	< 0.215	< 0.105	< 0.215
7) Z		I-131	< 0.082	< 0.220	< 0.282	< 0.282
광주 임곡동		Cs-134	< 0.130	< 0.161	< 0.297	< 0.297
1170		Cs-137	< 0.069	< 0.250	< 0.146	< 0.250
		K-40	32.320	256.130	180.150	156.200 ± 92.9

주1) 97년부터 분석을 수행함.

다. 물시료

1) 해수시료

가) 해수의 전베타 방사능(직접증발법)

해수에 대한 전베타 방사능 분석을 위해 과거 5년간 발전소 부지주변과 비교지점을 포함한 총 11개 지점에서 해수시료를 채취한 $100m\ell$ 를 증발 농축시킨 후 저준위 알파·베타 계측기로 전베타 방사능 농도를 측정하였다. 분석결과 전지점에서 연간평균 방사능농도가 6.74 2~9.533 Bq/ ℓ 로 검출되었으나 모두 고거의 평상범위 이내의 값이었다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-13과 같다.

나) 해수의 감마동위원소

해수에 대한 감마동위원소 분석을 위해 전베타 방사능 분석지점과 동일한 지점에서 채취한 시료를 감마핵종분석기로 측정하였다. 분석결과 Cs-137이 불검출~0.0044 Bq/ℓ로 나타났으며, 그 외의 인공핵종은 검출되지 않았다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-14와 같다.

다) 해수의 삼중수소 방사능

해수에 대한 삼중수소 분석을 위해 전베타 방사능 분석지점과 동일한 지점에서 채취한 시

료 중 6㎡를 취하여 섬광체 12㎡와 섞어 액체섬광 계수기로 분석하였다. 분석결과 불검출~ 172.510 Bq/ℓ로 나타났다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-15와 같다. 라) 해수의 스트론튬 90-방사능

해수에 대한 스트론튬-90 분석을 위해 전베타 방사능 분석지점과 동일한 지점에서 채취한 시료를 방사화학 분리과정을 거친 후 저준위 알파·베타계측기로 분석하다. 분석결과 전지점에서 0.0024~0.0032 Bq/ℓ로 나타났으며, 최근 3년간 조사결과를 표 2.8-16에 나타내었다.

표 2.8-13 해수의 전베타 방사능(직접증발법)

111 -21		위치		측정	결과(Bo	/ l)		허그
조사지점	방위	거리(km)	1995	1996	1997	1998	1999	평균
취수구			8,586	8.562	8.977	10.789	9.348	9.252 ± 0.82
배수구1			8.530	8.993	7.985	8.769	8.171	8.490 ± 0.37
배수구2			8.950	8.095	8.815	11.046	9.622	9.305 ± 1.00
배수구3			8.290	7.666				7.978 ± 0.31
배수구4			7.630	6.543	- 0		-	7.087 ± 0.54
양식장 ^{추2)}			 3	× =	_	=	9.533	9.533
배수로 ^{주2)}				_			8.661	8.661
몽냉기			8.941	7.653	7.328	8.524	7.702	8.029 ± 0.60
동호			8.822	7.870	344-	_	-	8.346 ± 0.48
가마미				8.203		3-3	3-	8.203
함평 ^{주1)}			u : -	-	5.880	6.355	7.992	6.742 ± 0.90

주1) 함평 지점은 97년부터 분석하였음.

주2) 양식장, 배수로지점은 99년부터 분석하였음.

표 2.8-14 해수의 감마동위원소

조사	위	치	-3 -		측정	[결과(Bq/	/ ()			
지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	평	世
		Animani-A	Mn-54	< 0.3520	-	< 0.0500	< 0.0022	< 0.0027	< 0.3520	
			Fe-59	< 0.8770	=	< 0.0900	< 0.0107	< 0.0099	< 0.8770	
취			Co-58	< 0.3770		< 0.0400	< 0.0035	< 0.0035	< 0.3770	
수			Co-60	< 0.4530	< 0.1600	< 0.0600	< 0.0024	< 0.0032	< 0.4530	
구			Cs-134	< 0.3130	-	< 0.0400	< 0.0016	< 0.0027	< 0.3130	
			Cs-137	< 0.2392	< 0.0705	0.0043	0.0027	0.0063	0.0044	± 0.0015
			K-40	12.67	9.97	4.38	5.73	10.53	8.66	\pm 3.10
			Mn-54	< 0.3750	-	< 0.0500	< 0.0024	< 0.0029	< 0.3750	
明			Fe-59	< 0.9940	-	< 0.1000	< 0.0123	< 0.0116	< 0.9940	
수			Co-58	< 0.3920	7	< 0.0500	< 0.0040	< 0.0037	< 0.3920	
구			Co-60	< 0.4250	< 0.1500	< 0.0600	< 0.0029	< 0.0033	< 0.4250	
£ "			Cs-134	< 0.3160	-	< 0.0500	< 0.0021	< 0.0029	< 0.3160	
1			Cs-137	< 0.3680	< 0.1200	0.0024	0.0026	0.0034	0.0028	± 0.0004
			K-40	11.97	9.46	6.42	8.92	9.70	9.29	± 1.77
			Mn-54	< 0.3640	1751	< 0.0500	< 0.0024	< 0.0031	< 0.3640	
明			Fe-59	< 1.2900	-	< 0.1000	< 0.0082	< 0.0121	< 1.2900	
수			Co-58	< 0.4660	-	< 0.0500	< 0.0031	< 0.0039	< 0.4660	
			Co-60	< 0.4140	< 0.1600	< 0.0600	< 0.0024	< 0.0034	< 0.4140	
구			Cs-134	< 0.3410	-	< 0.0500	< 0.0021	< 0.0029	< 0.3410	
2			Cs-137	< 0.3900	< 0.1300	0.0023	0.0040	0.0048	0.0037	± 0.0010
			K-40	12.44	9.14	*	6.57	8.31	9.11	± 2.13
11			Mn-54	< 0.3670		-	-		< 0.3670	
			Fe-59	<1.1200		-	-	(-	< 1.1200	
수			Co-58	< 0.4330	<u></u>	-	-	-	< 0.4330	
구			Co-60	< 0.5120	< 0.0900	<u> 2</u> 0	-	_	< 0.5120	
3			Cs-134	< 0.3120		= 2	-	-	< 0.3120	
주1)			Cs-137	< 0.9380	< 0.0800		-	====	< 0.9380	
			K-40	12.67	7.55		-	<u> </u>	10.11	± 2.56
яij			Mn-54	< 0.3590	inc.	-	-	wei .	< 0.3590	
			Fe-59	< 0.9870		-	12	20	< 0.9870	
수			Co-58	< 0.4120	1.55	-	=	750	< 0.4120	
구			Co-60	< 0.4680	< 0.1000	-		-	< 0.4680	
4			Cs-134	< 0.3160	957	-	(125)	- 58	< 0.3160	
주1)			Cs-137	The second second second	< 0.0800		-	-	< 0.3490	W - 22 - 32323
			K-40	11.43	8.71	-	-	-	10.07	± 1.36
동			Mn-54	< 0.3790	-		-	77	< 0.3790	
호			Fe-59	<1.1900		-	-	-	< 1.1900	
해			Co-58	< 0.4280	-	-	-	-	< 0.4280	
수			Co-60	< 0.5430		-	-	-	< 0.5430	
욕			Cs-134	< 0.3020	-	_		-	< 0.3020	
장			Cs-137	< 0.4840	< 0.1400	-	-	-	< 0.4840	
주1)			K-40	11.15	9.08	-		920	10.11	± 1.04

표 2.8-14 해수의 감마동위원소(계속)

	위치	3		측정	[결과(Bq/	/ l)	Markey	200
지점	방위 (km)	핵종	1995	1996	1997	1998	1999	평균
		Mn-54	-	-	-	-	_	
가		Fe-59	-	, -	 2		-	
마		Co-58	-	-	1000	-		
미		Co-60	-	< 0.1500		-	77.5	< 0.1500
주2)		Cs-134	-	-	-			
T-6)		Cs-137	-	< 0.1300	20	12	200	< 0.1300
		K-40	-	10.04	-	-		10.04
		Mn-54	-	2=		-	< 0.0026	< 0.0026
양		Fe-59	-	S= (-	1.77	< 0.0108	< 0.0108
식		Co-58	-	-		-	< 0.0037	< 0.0037
장		Co-60	-	-	3	-	< 0.0028	< 0.0028
~3 주3)		Cs-134	-	-	-	: 	< 0.0029	< 0.0029
T-9)		Cs-137	-	-	-	-	0.0038	0.0038
		K-40	-	_	-	-	9.67	9.67
		Mn-54	-	Saure .	-	enve	< 0.0034	< 0.0034
베		Fe-59	-		=	-	< 0.0127	< 0.0127
수 수		Co-58	-	1		5==	< 0.0044	< 0.0044
로		Co-60	-	9449	-	= 1	< 0.0035	< 0.0035
주3)		Cs-134	-	Limit:	-	=	< 0.0029	< 0.0029
13)		Cs-137			-	1	0.0043	0.0043
		K-40	_	-	_	F-1	10.62	10.62
		Mn-54	< 0.3330		< 0.0500	< 0.0026	< 0.0026	< 0.3330
		Fe-59	< 0.9690	11 000	< 0.1000	< 0.0115	< 0.0108	< 0.9690
공		Co-58	< 0.4000		< 0.0500	< 0.0039	< 0.0037	< 0.4000
냉		Co-60	< 0.4710	< 0.1500	< 0.0600	< 0.0029	< 0.0028	< 0.4710
7]		Cs-134	< 0.2890	200	< 0.0400	< 0.0022	< 0.0029	< 0.2890
		Cs-137	< 0.4090	< 0.1300	0.0024	0.0028	0.0038	0.0030 ± 0.0006
		K-40	11.69	9.52	5.25	8.08	9.67	8.84 ± 2.13
		Mn-54	100	-	< 0.0010	< 0.0015	< 0.0018	< 0.0018
		Fe-59	-	_	< 0.0040	< 0.0040	< 0.0041	< 0.0041
함		Co-58	-		< 0.0020	< 0.0016	< 0.0019	< 0.0020
평		Co-60	800	-	< 0.0010	< 0.0016	< 0.0019	< 0.0019
주4)		Cs-134	-	-	< 0.0010	< 0.0016	< 0.0020	< 0.0020
		Cs-137	-	-	0.0025	0.0012	0.0024	0.0021 ± 0.0006
		K-40	-	_	4.14	10.13	9.89	8.05 ± 2.77

- ※ 각 지점별, 연도별 기재되어있지 않은 핵종은 분석이 수행되지 않았음.
- ※ 97 상반기 KINS 감사결과 K-40는 직접증발법으로 분석을 요하여 AMP법으로 분석한 결과(1월 ~ 9월)는 수록하지 않았음.
- 주1) 배수구3, 배수구4 지점 및 동호해수욕장 지점은 96년까지 분석을 실시하였음.
- 주2) 가마미 지점은 96년에 신규로 지정하여 분석하였음.
- 주3) 양식장 및 배수로 지점은 99년 신규로 지정 분석 실시하였음.
- 주4) 함평 지점은 97년부터 신규로 지정 분석 실시하였음.

표 2.8-15 해수의 삼중수소 방사능

	위	치		축?	정결과(Bq	/ l)	**************************************	
조사지점	방위	거리 (km)	1995	1996	1997	1998	1999	평균
취수구			17.580	< 20.100	8.747	6.000	12.898	11.306 ± 4.38
배수구1			37.130	25.303	5.730	19.814	64.285	30.452 ± 19.70
배수구2			24.630	21.833	8.480	12.330	22.877	18.030 ± 6.41
배수구3 ^{추1)}			21.530	31.933	-	-	-	26.732 ± 5.20
배수구4 ^{주1)}			19.120	26.665	<u>1</u>	1/2		22.893 ± 3.77
양식장 ^{주2)}	Ì			-	20	1/2	172.510	172.510
배수로 ^{주2)}				124	-		4.930	4.930
몽냉기			<17.200	< 20.130	< 20.730	5.047	8.237	6.642 ± 1.60
동호 ^{주1)}			<17.200	<20.130			-	<20.130
가마미 ^{주3)}			1	<16.500			<u></u>	<16.500
함평 ^{주4)}			(1	722	< 5.040	< 4.390	<1.710	< 5.040

- 주1) 배수구3, 배수구4 지점 및 동호해수욕장 지점은 96년까지 분석 실시하였음.
- 주2) 양식장 및 배수로 지점은 99년 신규로 지정 분석 실시하였음.
- 주3) 가마미 지점은 96년에 신규로 지정하여 분석하였음.
- 주4) 함평 지점은 97년부터 신규로 지정 분석 실시하였음.

표 2.8-16 해수의 스트론튬 방사능

7) 7)		위치	- 추	정결과(Bq/	71 →		
지점	방위	거리(km)	1997	1998	1999	평균	
배수구1			0.0030	0.0038	0.0023	0.0030 ± 0.0006	
배수로 ^{주1)}			2	41	0.0032	0.0032	
함평			0.0040	0.0013	0.0018	0.0024 ± 0.0012	

- ※ Sr-90 분석은 97년 하반기부터 분석 실시하였음.
- ※ 표준편차는 년도별 측정치의 표준편차임.
- 주1) 배수로 지역은 99년부터 분석 실시하였음.

2) 지하수시료

가) 지하수의 감마동위원소

지하수의 감마동위원소 분석을 위해 발전소 부지주변 1곳(양지)과 비교지점 1곳(광주 오룡동)에서 채취한 시료를 증발 농축시킨 후 감마해종분석기로 측정하였다. 분석결과 전 지점에서 인공핵종의 검출은 없었다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-17과 같다.

나) 지하수의 삼중수소 방사능

지하수의 삼중수소 방사능측정을 위해 전베타방사능 분석지점과 동일한 지점에서 채취한 시료 중 6ml를 중류시켜 섬광체 12ml와 섞어 액체섬광 계수기로 분석하였다. 분석결과 전지점에서 삼중수소가 검출되지 않았다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-18과 같다.

표 2.8-17 지하수의 감마동위원소

조사	위	치			측*	정결과(Bo	/l)		
지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	평균
			Co-60	< 0.398	< 0.290	< 0.047	< 0.053	< 0.088	< 0.398
			I-131	< 0.466	< 4.230	< 0.138	< 0.064	< 0.084	< 4.230
양지 1			Cs-134	< 0.660	=	< 0.043	< 0.043	< 0.061	< 0.660
			Cs-137	< 0.418	< 0.290	< 0.047	< 0.059	< 0.069	< 0.418
			K-40	< 5.780	-	-	-	-	< 5.780
			Co-60	< 0.433	< 0.280		-		< 0.433
양지 2			I-131	< 0.384	< 3.890	-	-	-	< 3.890
予1)			Cs-134	< 0.723	-	-	21	-	< 0.723
30.07			Cs-137	< 0.463	< 0.260	-	===	-	< 0.463
			K-40	< 5.750	-	-			< 5.750
			Co-60	-	-	< 0.039	< 0.042	< 0.042	< 0.042
광주			I-131	-	-	< 0.097	< 0.075	< 0.047	< 0.097
오룡동			Cs-134	i Lini Francisco	- 	< 0.040	< 0.043	< 0.042	< 0.043
주1)			Cs-137			< 0.043	< 0.043	< 0.043	< 0.043
			K-40	-	-	744		-	-

주1) 97년부터 양지2 지점이 광주오룡동으로 변경됨.

표 2.8-18 지하수의 삼중수소 방사능

7 11	유	시치		측	정결과(Bq/	(l)		
조사 지점	방위	거리 (km)	1995	1996	1997	1998	1999	평균
양지1			< 16.870	< 20.130	< 14.060	< 4.720	< 4.180	< 20.130
양지2 ^{주1)}	-		< 16.670	< 20.130		-	-	< 20.130
광주 오룡동 ^{주1)}	-		17Th	-	< 4.690	< 4.010	< 1.360	< 4.690

주1) 광주 오룡동 지점은 97년부터 비교지점으로 선정 분석 실시하였음.

3) 빗물시료

가) 빗물의 전베타방사능

빗물의 전베타방사능측정을 위해 발전소 부지주변 4곳(기상관측소, 계동, 주사무실, 홍농사태)과 비교지점 1곳(광주 오룡동)에서 채취한 시료를 증발 농축시킨 후 저준위 알파·베타계측기로 분석하였다. 분석결과 부지주변 4곳의 5년간 평균값은 0.066∼0.101 Bq/ℓ이었고, 비교지역 1곳의 평균값은 0.058 Bq/ℓ로 나타나 각 지점별 분석결과가 과거의 평상범위이내의 값을 보였다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-19와 같다.

나) 빗물의 감마동위원소

빗물의 감마동위원소 분석을 위해 전베타방사능 분석지점과 동일한 지점에서 채취한 시료를 증발 농축시킨 후 감마핵종분석기로 측정하였다. 분석결과 인공방사성핵종이 전혀 검출되지 않았다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-20과 같다.

다) 빗물의 삼중수소 방사능

빗물의 삼중수소 방사능측정을 위해 전베타방사능 분석지점과 동일한 지점에서 채취한 시료 중 6㎖를 증류시켜 섬광체 12㎖와 섞어 액체섬광 계수기로 분석하였다. 분석결과 기상판 측소에서 19.752 Bq/ℓ로 최대치를 보였으나, 과기부고시 제98-12호의 일반인에 대한 최대 허용수중농도인 222,000 Bq/ℓ의 0.01%이하로 미미한 수치이며 각 지점별 분석결과는 모두 과거의 평상범위 이내의 값으로 나타났다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-21과 같다.

표 2.8-19 빗물의 전베타방사능

위치 축정결과(Bq/ℓ)

	위	최		측정	결과(Bq/	(l)		평균	
지점	방위	거리 (km)	1995	1996	1997	1998	1999	평 간	
기상관측소			0,100	0.080	0.120	0.101	0.082	0.097 ± 0.015	
주사무실			0.050	0.090	0.175	0.073	0.115	0.101 ± 0.043	
계동			0.050	< 0.080	0.055	0.107	0.052	0.066 ± 0.024	
홍농사택 ^{주1)}			=<	_	0.033	0.110	0.091	0.078 ± 0.033	
광주오룡 ^{주2)}			20	_	0.046	0.068	0.060	0.058 ± 0.009	

주1) 96년에 홍농사택 지점이 분석대상 지점으로 선정되었음.

주2) 97년부터 광주오룡동 지점이 비교지점으로 선정되었음.

표 2.8-20 빗물의 감마동위원소

조사	위	치			축	정결과(Bq	/ l)	* 100 * * 4000.00)
지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	평균
7)			Co-60	_	< 0.300	< 0.058	< 0.078	< 0.084	< 0.300
상			I-131	< 2.200	< 1.340	< 0.140	< 0.092	< 0.087	< 2.200
관 측			Cs-134	< 0.278	_	< 0.057	< 0.058	< 0.065	< 0.278
소			Cs-137	< 0.389	< 0.290	< 0.057	< 0.073	< 0.069	< 0.389
주			Co-60	-	< 0.300	< 0.058	< 0.060	< 0.099	< 0.300
사			I-131	< 2.420	< 1.340	< 0.131	< 0.094	< 0.108	< 2.420
무			Cs-134	< 0.532	-	< 0.052	< 0.048	< 0.076	< 0.532
실			Cs-137	< 0.390	< 0.260	< 0.055	< 0.055	< 0.078	< 0.390
			Co-60	-	< 0.330	< 0.063	< 0.071	< 0.099	< 0.330
계			I-131	< 3.380	< 1.320	< 0.126	< 0.094	< 0.093	< 3.380
동			Cs-134	< 0.521	-	< 0.055	< 0.058	< 0.075	< 0.521
			Cs-137	< 0.594	< 0.300	< 0.059	< 0.066	< 0.082	< 0.594
귬			Co-60	-	< 0.310	-		-	< 0.310
정			I-131		< 5.040	- 	ositi e e	n e Trepan	< 5.040
목			Cs-134	-	_	11 04th	di ne	-	227 22
장 주1)			Cs-137	_	< 0.290	-	_	-	< 0.290
-			Co-60	-	< 0.310	< 0.056	< 0.081	< 0.080	< 0.310
농			I-131	-	< 9.380	< 0.248	< 0.093	< 0.091	< 9.380
사			Cs-134	/_	_	< 0.047	< 0.060	< 0.065	< 0.065
택			Cs-137	-	< 0.280	< 0.054	< 0.072	< 0.067	< 0.280
광			Co-60	3=	-	< 0.064	< 0.044	< 0.040	< 0.064
주			I-131	7.77	_	< 0.227	< 0.074	< 0.052	< 0.227
오 룡			Cs-134	-		< 0.056	< 0.045	< 0.042	< 0.056
동 주2)			Cs-137	===	-	< 0.062	< 0.047	< 0.042	< 0.062

주1) 96년도 금정목장은 참고용 시료채취 지점임.

주2) 광주오룡동은 97년부터 신규시료채취 지점임.

표 2.8-21 빗물의 삼중수소 방사능

	9	치		측기	성결과(Bq	/ ()		
조사지점	방위	거리 (km)	1995	1996	1997	1998	1999	평균
기상관측소			25.870	33.067	11.029	13.939	14.855	19.752 ± 8.350
주사무실			6.390	< 19.140	7.335	6.716	3.755	6.049 ± 1.367
계동			11.270	< 19.140	3.620	5,580	< 4.860	6.823 ± 3.244
흥농사택 ^{주1)}			(1 <u>923</u>	< 15.720	<22.370	10.400	< 4.860	10.400
광주오룡동 ^{주2)}			A.T.	5.775	<4.930	< 4.330	< 1.540	< 4.930
금정목장 ^{주3)}			-	< 15.890	-	-	-	< 15.890

- 주1) 96년에 흥농사택 지점이 분석대상 지점으로 선정되었음.
- 주2) 97년부터 광주오룡동 지점이 비교지점으로 선정되었음.
- 주3) 금정목장 지점은 96년에만 분석이 수행되었음.

4) 하천수시료

가) 하천수의 감마동위원소

하천수의 감마동위원소 분석을 위해 발전소 부지주변 1곳(연우교)과 비교지점 1곳(광주 임 곡교)에서 채취한 시료를 증발 농축시킨 후 감마핵종분석기로 측정하였다. 분석결과 전 지점 에서 인공핵종의 검출은 없었다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-22와 같다.

나) 하천수의 삼중수소 방사능

하천수의 삼중수소 방사능측정을 위해 감마동위원소 분석지점과 동일한 지점에서 채취한 시료 중 6mℓ를 중류시켜 섬광체 12mℓ와 섞어 액체섬광 계수기로 분석하였다. 분석결과 연우 교에서 6.430 Bq/ℓ가 검출되었으나 평상범위 이내의 값이었고 그 외의 검출은 나타나지 않 았다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-23과 같다.

표 2.8-22 하천수의 감마동위원소

조사	위치	50 TT		축	정결과(Bq	/ ()		평균	
지점	방위 (km)	핵종	1995	1996	1997	1998	1999	% र	
		Co-60	< 0.349	< 0.320	< 0.060	< 0.005	< 0.006	< 0.349	
연		I-131	< 1.260	< 7.510	< 0.122	< 0.067	< 0.094	< 7.510	
우 교		Cs-134	< 0.291	-	< 0.050	< 0.004	< 0.004	< 0.291	
		Cs-137	< 0.299	< 0.680	< 0.050	< 0.008	< 0.0044	< 0.680	
광	And the state of t	Co-60	22	_	< 0.041	< 0.002	< 0.0018	< 0.041	
주 임		I-131	(-	_	< 0.209	< 0.086	< 0.0500	< 0.209	
곡 교		Cs-134	-	-	< 0.040	< 0.002	< 0.0019	< 0.040	
주1)		Cs-137	_	_	< 0.044	< 0.002	< 0.0018	< 0.044	

주1) 광주임곡교는 97년부터 신규 비교지점 시료채취 지점임.

표 2.8-23 하천수의 삼중수소 방사능

조사지전	위	치		(m. 10 mm)				
조사지점	방위	거리 (km)	1995	1996	1997	1998	1999	평균
연우교			8.360	< 20.130	< 18.780	4.500	< 4.350	6.430 ± 1.930
임곡교 ^{주1)}	•		ie.	-	< 4.790	< 4.170	< 1.400	< 4.790

[※] 표준편차는 년도별 측정치의 표준편차임.

라. 해저시료

1) 해저토

가) 해저토의 전베타 방사능

해저토의 전베타방사능측정을 위해 취수구, 배수구, 동호, 몽냉기의 4개 지점에서 채취한 시료를 증발 농축시킨 후 저준위 알파·베타계측기로 분석하였다. 1997년부터는 과기부고시

주1) 임곡교 지점은 97년부터 비교지점으로 선정 분석 실시하였음.

96-31호에 의해 방사능 분석항목에서 제외되었다.

나) 해저토의 감마동위원소

해저토의 감마동위원소 분석을 위해 부지주변 3곳(취수구, 배수구, 몽냉기)과 비교지점 1 곳(함평)에서 채취한 시료를 건조·분쇄 후 감마핵종분석기로 측정하였다. 분석결과 Cs-137 이 1.440~3.279 Bq/kg-dry로 검출되었으나 평상범위 수준이었고, 그 외의 인공핵종 검출은 없었다. 5년간 조사결과를 종합 정리한 결과는 표 2.8~24와 같다.

다) 해저토의 스트론튬-90 방사능

해저토의 스트론튬-90 방사능측정을 위해 부지주변 1곳(배수구)과 비교지점 1곳(함평)에서 채취한 시료를 방사화학 분리과정을 거친 후 저준위 알파·베타계측기로 분석하였다. 분석결과 0.578~0.855 Bq/kg-dry로 검출되었으나, Sr-90은 과거 선진국의 핵실험 등에 의해 Cs-137과 동반하여 나타나는 핵종이다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-25와 같다.

표 2.8-24 해저토의 감마동위원소

조사	위치			측정결	과(Bq/kg	g-dry)			
지점	방위 (km)	핵종	1995	1996	1997	1998	1999	স্ত	! 균
		Mn-54	sar.	Lane .	< 0.961	< 0.783	< 0.362	< 0.961	
		Co-58	=	-	< 1.020	< 0.730	< 0.555	< 1.020	
		Fe-59	774	-	< 2.810	< 1.790	< 1.350	< 2.810	
취		Co-60	-	-	< 0.964	< 0.850	< 0.596	< 0.964	
수		Zr-95	-	-	< 2.010	< 0.953	< 0.965	< 2.010	
구		Ag-110m	-	-	< 1.010	< 0.815	< 0.575	< 1.010	
		Cs-134	< 1.450	< 1.230	< 0.835	< 0.893	< 0.632	< 1.450	
		Cs-137	2.020	< 2.280	4.331	3.379	3.385	3.279	± 0.82
		K-40	745.0	930.05	871.1	932.2	1163.9	928.5	± 135.9
		Mn-54	_	am.	< 0.533	< 0.707	< 0.388	< 0.707	
		Co-58	628	<u>=</u>	< 0.838	< 0.709	< 0.511	< 0.838	
		Fe-59		-	< 2.090	< 1.830	< 1.300	< 2.090	
н¥		Co-60	-	-	< 0.925	< 0.777	< 0.532	< 0.925	
수		Zr-95	-	-	< 1.520	< 0.848	< 0.917	< 1.520	
구		Ag-110m	-	-	< 0.821	< 0.759	< 0.502	< 0.821	
		Cs-134	< 1.240	< 1.630	< 0.778	< 0.815	< 0.555	< 1.630	
		Cs-137	2.145	< 1.090	1.805	1.734	1.363	1.761	± 0.28
		K-40	798.0	1387.8	952.2	848.9	799.1	957.2	± 222.5

표 2.8-24 해저토의 감마동위원소(계속)

조사	위	치			측정결	과(Bq/kg	g-dry)		200	
지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	평	균
3.55.77.55			Mn-54	-	-	< 0.741	< 0.808	< 0.311	< 0.808	
			Co-58		a la	< 0.751	< 0.768	< 0.482	< 0.768	
			Fe-59	-	-	< 2.080	< 1.950	< 1.240	< 2.080	
몽			Co-60	-	-	< 0.793	< 0.863	< 0.543	< 0.863	
냉			Zr-95	-	-	< 1.370	< 0.978	< 0.874	< 1.370	
기			Ag-110m	=0	-	< 0.736	< 0.881	< 0.495	< 0.881	
			Cs-134	< 1.380	< 1.240	< 0.640	< 0.958	< 0.581	< 1.380	
			Cs-137	2.175	2.147	2.607	2.849	1.980	2.351	± 0.32
			K-40	770.0	895.2	910.0	859.6	1196.4	926.3	± 143.6
동호			Cs-134	< 1.230	< 2.980	-		-	< 2.980	
해수			Cs-137	1.635	1.245	-	-		1.440	±0.20
욕장			K-40	801.0	1175.2	-	-	-	988.1	± 187.1
			Mn-54	-	-	< 0.718	< 0.802	< 0.488	< 0.802	
			Co-58	-		< 0.960	< 0.750	< 0.461	< 0.960	
			Fe-59	-		< 2.150	< 1.890	< 1.250	< 2.150	
			Co-60	_	-	< 1.020	< 0.864	< 0.495	< 1.020	
함			Zr-95	-	_	< 1.730	< 0.946	< 0.855	< 1.730	
평			Ag-110m	=	_	< 1.020	< 0.792	< 0.484	< 1.020	
			Cs-134	-	_	< 1.050	< 0.949	< 0.582	< 1.050	
			Cs-137	-	_	1.778	2.288	2.460	2.175	± 0.29
			K-40	. 	1 	1059.7	1091.4	1032.9	1061.4	±23.9
5750			Cs-134		< 0.900	-	_	129	< 0.900	
위			Cs-137	-	2.125	-	-		2.125	
도			K-40	1-1	737.3	-	-		737.3	
송			Cs-134	_	< 1.070	-	-	<u>2</u> 23	< 1.070	
0)			Cs-137	-	1.595	2		20	1.595	
5			K-40	923	688.2	(2)	_		688.2	

^{※ 97}년부터 비교지점이 동호해수욕장에서 함평으로 변경됨.

^{* 99}년도에는 취수구와 배수구의 시료채취 거리가 각각 0.5, 1.0km에서 0.3, 2.4km로 변경됨.

^{* 95}년, 96년도에는 Cs-134, Cs-137, K-40 이외의 핵종은 분석하지 않음.

표 2.8-25 해저토의 스트론튬 방사능

\) -> -1	٩	치		측정결				
조사지점	방위	거리 (km)	1995	1996	1997	1998	1999	평균
배수구			200	-	0.480	0.689	0.565	0.578 ± 0.086
함평			Tene and annual	and .	0.535	1.029	1.000	0.855 ± 0.226

- ※ 95, 96년은 취수구, 배수구, 몽냉기, 동호지점이 분석대상 지점이었으나, 감마핵종 분석결과 Cs-137이 검출하한값 이하이므로 분석을 실시하지 않음.
- ※ 97년부터 배수구, 함평 지역이 분석 대상 지역으로 선정.

2) 저생지표생물시료(불가사리, 게)

가) 저생지표생물의 감마동위원소

불가사리의 감마동위원소 분석을 위해 부지주변 1곳(몽냉기)과 비교지점 1곳(송이도)에서 시료를 채취하여 건조·분쇄 후 감마핵종분석기로 분석하였고, 게에 대해서는 부지주변 2곳 (몽냉기, 장호)과 비교지점 1곳(송이도)에서 시료를 채취하였다. 분석결과 불가사리와 게 모두에서 인공핵종은 검출되지 않았으며 천연핵종인 K-40이 67.378~80.887 Bq/kg-wet로 나타났다. 3년간 조사결과를 종합 정리한 결과는 표 2.8-26과 같다.

표 2.8-26 저생지표생물의 감마동위원소 (불가사리)

종	조사지점	위치	해종	측정경	텔과(Bq/kg	g-wet)	74 T
류	エゾン	방위 거리(km)	यक	1997	1998	1999	평균
			Mn-54	< 0.191	< 0.125	< 0.097	< 0.191
			Co-58	< 0.195	< 0.125	< 0.092	< 0.195
			Fe-59	< 0.443	< 0.266	< 0.241	< 0.443
			Co-60	< 0.190	< 0.134	< 0.116	< 0.190
	몽냉기		Zr-95	< 0.335	< 0.220	< 0.164	< 0.335
			Ag-110m	< 0.181	< 0.111	< 0.083	< 0.181
1-1			Cs-134	< 0.201	< 0.129	< 0.102	< 0.201
불			Cs-137	< 0.197	< 0.126	< 0.092	< 0.197
가			K-40	57.725	68.643	104.150	76.839 ± 19.82
사			Mn-54	< 0.078	< 0.069	< 0.095	< 0.095
리			Co-58	< 0.076	< 0.070	< 0.094	< 0.094
			Fe-59	< 0.175	< 0.187	< 0.234	< 0.234
	2 20		Co-60	< 0.076	< 0.072	< 0.104	< 0.104
	송이도		Zr-95	< 0.138	< 0.129	< 0.165	< 0.165
			Ag-110m	< 0.070	< 0.064	< 0.085	< 0.085
			Cs-134	< 0.077	< 0.073	< 0.096	< 0.096
			Cs-137	< 0.078	< 0.064	< 0.095	< 0.095
			K-40	35.490	96.570	110.600	80.887 ± 32.61

※ 97년부터 분석을 수행함.

표 2.8-26 저생지표생물의 감마동위원소 (게)

종	조사지점	위치	핵종	측정결과(Bq/kg-wet)			7
류		방위 거리(km)		1997	1998	1999	평균
게	몽냉기		Mn-54	< 0.192	< 0.146	< 0.108	< 0.192
			Co-58	< 0.284	< 0.169	< 0.102	< 0.284
			Fe-59	< 0.767	< 0.424	< 0.249	< 0.767
			Co-60	< 0.274	< 0.172	< 0.113	< 0.274
			Zr-95	< 0.578	< 0.295	< 0.195	< 0.578
			Ag-110m	< 0.253	< 0.145	< 0.101	< 0.253
			Cs-134	< 0.248	< 0.146	< 0.116	< 0.248
			Cs-137	< 0.270	< 0.155	< 0.111	< 0.270
		÷	K-40	59.570	74.865	67.700	67.378 ± 6.25
	장호		Mn-54	< 0.105	< 0.065	< 0.083	< 0.105
			Co-58	< 0.101	< 0.100	< 0.083	< 0.101
			Fe-59	< 0.221	< 0.238	< 0.187	< 0.238
			Co-60	< 0.096	< 0.096	< 0.082	< 0.096
			Zr-95	< 0.194	< 0.208	< 0.148	< 0.208
			Ag-110m	< 0.081	< 0.094	< 0.076	< 0.094
			Cs-134	< 0.107	< 0.117	< 0.088	< 0.117
			Cs-137	< 0.109	< 0.102	< 0.084	< 0.109
			K-40	53.445	89.660	81.850	74.985 ± 15.56
manufacture of the control of the co	송이도		Mn-54	< 0.153	< 0.083	< 0.076	< 0.153
			Co-58	< 0.155	< 0.092	< 0.069	< 0.155
			Fe-59	< 0.344	< 0.232	< 0.180	< 0.344
			Co-60	< 0.159	< 0.086	< 0.077	< 0.159
			Zr-95	< 0.272	< 0.172	< 0.136	< 0.272
			Ag-110m	A CONTRACTOR OF THE PROPERTY O	< 0.081	< 0.065	<0.101
	**		Cs-134	< 0.148	< 0.085	< 0.073	<0.148
			Cs-137	< 0.158	< 0.086	< 0.073	<0.158
	1		K-40	50.995	90.550	86.700	76.082 ± 17.81

^{※ 97}년부터 분석을 수행함.

3) 양식장시료

가) 양식장시료의 감마동위원소

양식장 해수에 대한 감마동위원소 분석을 위해 부지내부에 위치한 양식장에서 채취한 시료를 증발농축 시킨 후 감마핵종분석기로 분석하였다. 또한 양식어류 및 사료에 대한 감마동위원소 분석을 위해 시료를 채취하여 건조·분쇄 후 감마핵종분석기로 분석하였다. 분석결과 해수와 어류에서 인공핵종의 검출은 전혀 없었다. 2년간 조사결과를 종합 정리한 결과는 표 2.8-27과 같다.

표 2.8-27 양식장시료의 감마동위원소^{주1)}

			측정결과(E	Bq/ℓ(해수),	
종	조사지점	핵종	Bq/kg-wet	(어류,사료))	평균
류	그 사기점		1997	1998	45 TI
		Mn-54		< 0.057	< 0.057
	*	Fe-59	-	< 0.124	< 0.124
	de calculation de la calculati	Co-58	< 0.050	< 0.055	< 0.055
해	0	Co-60	< 0.060	< 0.071	< 0.071
수	양식장	Cs-134	< 0.050	< 0.054	< 0.054
		Cs-137	< 0.050	< 0.066	< 0.066
		I-131	< 0.160	< 0.075	< 0.160
		K-40	8.773	5.760	7.267 ± 1.51
		Mn-54	-	< 0.166	< 0.166
		Fe-59		< 0.461	< 0.461
		Co-58	< 0.110	< 0.159	< 0.159
어	양식장	Co-60	< 0.130	< 0.179	< 0.179
류	070	Cs-134	< 0.090	< 0.117	< 0.117
		Cs-137	< 0.120	< 0.142	< 0.142
		I-131	< 0.260	< 0.119	< 0.260
		K-40	104.460	190.100	147.280 ± 42.82
		Mn-54	-	< 0.285	< 0.285
		Fe-59	_	< 0.660	< 0.660
		Co-58	< 0.350	< 0.284	< 0.350
사	양식장	Co-60	< 0.430	< 0.347	< 0.430
盄.	3778	Cs-134	< 0.330	< 0.286	< 0.330
		Cs-137	< 0.360	0.332	0.332 ± 0.10
		I-131	< 0.800	< 0.452	< 0.800
		K-40	164.277	156.000	160.138 ± 4.14

주1) 97년, 98년도에만 분석을 수행함.

마. 식료품

1) 우유시료

가) 우유의 감마동위원소

우유에 대한 감마동위원소 분석을 위해 발전소 부지주변 1곳(백동목장)과 비교지점 1곳 (아산목장에서 주곡목장으로 변경)에서 구입한 미가공 우유를 감마핵종분석기로 분석하였다. 분석결과 주곡목장에서 Cs-137이 0.117 Bq/ℓ가 검출되었으나 일시적인 현상이었고 그 외의 시료에서는 인공핵종의 검출은 없었으며, 천연핵종인 K-40이 전 지점에서 과거의 수준으로 나타났다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-28과 같다.

나) 우유의 방사성옥소

우유의 방사성옥소 분석을 위해 구입한 시료를 용매추출법으로 전처리한 후 저준위 알

파·베타계측기로 분석하였다. 분석결과 최근 3년간 방사성옥소는 검출되지 않았다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-28과 같다.

다) 우유의 스트론튬-90

우유의 스트론튬-90 분석을 위해 구입한 시료를 방사화학법으로 전처리한 후 저준위 알파·베타계측기로 분석하였다 시료를 방사화학 분리과정을 거친 후 저준위 알파·베타계측기로 분석하였다. 분석결과 1997년 각 목장에서 Sr-90이 0.012, 0.014 Bq/ℓ가 검출되었으나 일시적인 현상이었던 것으로 분석된다. 5년간 조사결과를 종합 정리한 결과는 표 2.8-28과 같다.

조사	위치			축	정결과(P	Bg/ℓ)	A-10111 -11-11	
지점	방위 (km)	핵종	1995	1996	1997	1998	1999	평균
朔		방사성옥소	0.020	< 0.040	< 0.030	< 0.059	< 0.085	0.020
동		Cs-137	< 0.591	< 0.270	< 0.194	< 0.050	< 0.049	< 0.591
목		Sr-90	-	100	0.012	< 0.030	< 0.040	0.012
장		K-40	43.50	48.75	49.02	28.66	42.53	42.49 ± 7.40
아		방사성옥소	0.030	< 0.040	< 0.041	< 0.037	-	0.030
산		Cs-137	< 0.463	< 0.280	< 0.114	0.117	-	0.117
목		Sr-90	-	7	0.014	< 0.030	_	0.014
장		K-40	42.50	42.47	57.78	35.64	-	44.60 ± 8.11
주		방사성옥소	-	-	_	440	< 0.039	< 0.039
곡		Cs-137	_	-		-	< 0.047	< 0.047
목		Sr-90		-	-	-	< 0.040	0.040
장		K-40	-	-	1=	-	45.98	45.98 ± 0.00

표 2.8-28 우유의 방사능 분석결과¹⁾

2) 해산식품류

가) 해산식품류의 감마동위원소

해산식품류(어류, 패류, 해조류)에 대한 감마동위원소 분석을 위해 발전소 부지주변 3곳 (배수구, 취수구, 몽냉기)과 비교지점 1곳(송이도)에서 채취한 시료를 건조, 분쇄한 후 감마핵종분석기로 분석하였다. 분석결과 어류에서는 Cs-137이 불검출~0.3 Bq/kg-wet 검출되었

[※] 각 지점별, 연도별 기재되어있지 않은 핵종은 분석이 수행되지 않았음.

[※] 표준편차는 년도별 측정치의 표준편차임.

^{※ 98}년부터 아산목장 지점이 주곡목장 지점으로 교체됨.

으며 해조류에서도 Cs-137이 불검출~0.198 Bq/kg-wet로 나타났으나 주로 핵실험의 영향으로 소량씩 검출되고 있는 핵종이며 그 외의 인공핵종은 검출되지 않았다. 패류에서는 인공핵종의 검출이 전혀 없었으며 천연핵종인 K-40은 모든 시료에서 검출되고 있다. 5년간조사결과를 종합 정리한 결과는 표 2.8-29~31과 같다.

표 2.8-29 어류의 감마동위원소

조사 - 지점	방위	거리	핵종			, · <u>u</u>	g-wet)					
		(km)	70	1995	1996	1997	1998	1999		Σ	병균	i kabupatan da
			Mn-54	- >	92 44	< 0.193	< 0.230	< 0.127	<	0.230		10100000
			Co-60		-	< 0.243			<	0.274		
н			Zr-95	20	100	< 0.453	< 0.395	< 0.213	<	0.453		
수			Ag-110m	-	157	< 0.194	< 0.220	< 0.122	<	0.220		
1			I-131	-	<1.320	< 2.840	< 0.584	< 0.140	<	2.840		
구			Cs-134	< 0.441	< 0.210	< 0.168	< 0.193	< 0.105	<	0.441		
			Cs-137	< 0.463	< 0.290	< 0.202	< 0.186	0.100		0.100		
			K-40	70.65	117.7	101.2	108.7	110.4		101.7	土	16.41
明			Mn-54	77.	-	-	E	< 0.135	<	0.135		
수			Co-60	700	8=	-		< 0.166	<	0.166		
			Zr-95	P# 1	:		-	< 0.229	<	0.229		
구			Ag-110m	<u> </u>	24	-	-	< 0.127	<	0.127		
부			I-131	- 1000 - 1000 - 1000	120	-		< 0.133	<	0.133		
1 1			Cs-134	-	-		100	< 0.105	<	0.105		
근			Cs-137	-	7	-	-	0.150		0.150		1.0
주1)			K-40	-	-	-		136.5		136.5		
			Mn-54	÷:	-	< 0.137	< 0.149	< 0.076	<	0.149		
50			Co-60	20	24	< 0.147	< 0.175	< 0.092	<	0.175		
취			Zr-95	=:	S 	< 0.246	< 0.299	< 0.138	<	0.299		
수			Ag-110m		-	< 0.129	< 0.150	< 0.073	<	0.150		
구			I-131	T/2	0.772	< 0.280	< 0.518	< 0.186	<	0.518		
추2)			Cs-134	-:	-	< 0.122	< 0.138	< 0.068	<	0.138		(2 24
			Cs-137	1	1722	0.127		0.120		0.124	\pm	0.004
			K-40	-	ş. 	168.9	108.3	89.1		122.1		34.01
취			Mn-54	-	-	_	-	< 0.084	<	0.084		
			Co-60	-	1000	-	-	< 0.093		0.093		8
수			Zr-95		s-	hade (-	< 0.148	1 0	0.148		91
구			Ag-110m			_		< 0.080		0.080		
부			I-131	-	-	_		< 0.180		0.180		3
1 1			Cs~134	=	-	_	94	< 0.077	1 9			
근			Cs-137	ine:		_	_	0.070		0.070		
주1)			K-40	-	-	-	-	130.0		130.0		

표 2.8-29 어류의 감마동위원소(계속)

조사	위	치			측정결	과(Bq/k	g-wet)					
조^r 지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	65	J.	균	
			Mn-54	12	72		- O VALCE	< 0.228	<	0.228		
			Co-60	a=	-	-	105	< 0.278	<	0.278		
Δŀ			Zr-95	92	22	22	50 00	< 0.390	<	0.390		
양			Ag-110m	## (350	9 .	17.2	< 0.256	<	0.256		
식			I-131	-	-	-	-	< 0.213	<	0.213		
장			Cs-134	27	32	21	121	< 0.202		0.202		
			Cs-137	-0	8=		1=1	0.300	ł	0.300		
			K-40		=	<u>-</u> e		176.8		176.8		
			Mn-54		_	< 0.292	< 0.158	< 0.183	<	0.292		
			Co-60	sian (-	< 0.316			i .	0.316		
몽			Zr-95	20	20	< 0.487	Contract Contract	and the second of the second		0.487		
냉			Ag-110m		-	< 0.268	I .		1	0.268		
기			I-131	-	<253.0	< 0.592			100	253.0		
추3)			Cs-134	_		< 0.249				0.420		
			Cs-137	-	< 0.540		0.110	0.080		0.173	\pm	0.111
			K-40	-	199.4		114.1	110.4		146.3	\pm	36.67
			Mn-54	-	-	< 0.178	-	< 0.075	<	0.178		
			Co-60	-	-	< 0.199	< 0.172			0.199		
٨.			Zr-95	-		< 0.349	< 0.298	< 0.128	<	0.349		
송			Ag-110m	-	-	< 0.176	< 0.147	< 0.069	<	0.176		
0]			I-131	-	<1.370	< 0.944	< 0.526	< 0.146	<	1.370		
포			Cs-134	< 0.433	< 0.230	< 0.169	< 0.141	< 0.066	<	0.433		
			Cs-137	< 0.538	< 0.310	0.204	0.140	0.110		0.151	+	0.039
			K-40	107.5	132.3	224.4	151.0	134.9		150.0	土	39.70
			Mn-54	-		-	-	-		7 1- 1		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			Co-60	_	-	_	-	-		-		
위			Zr-95	-	-	-	-	=		C775		
도			Ag-110m		-	-		-		-		
·王 주4)			I-131	-	<18.30	-	-	-	<	18.300		
T4)			Cs-134	< 0.428	< 0.280	-	-	-	<	0.4280		
			Cs-137	< 0.479	< 0.340	-	-	-	<	0.4790		
			K-40	100,4	128.7	-	_	-		114.54	\pm	14.19

- ※ 각 지점별, 연도별 기재되어있지 않은 핵종은 분석이 수행되지 않았음.
- ※ 표준편차는 년도별 측정치의 표준편차임.
- 주1) 배수구부근, 취수구부근 및 양식장 지점은 99년부터 분석 실시하였음.
- 주2) 취수구 지점은 97년에 신규로 지정하여 분석하였음.
- 주3) 몽냉기 지점은 참고용으로 96년부터 채취를 시작함.
- 주4) 위도지역은 96년까지 분석실시 하였음.

표 2.8-30 퍠류의 감마동위원소

조사	위:	え]			측정결]과(Bq/k	g-wet)		
지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	평균
			Mn-54	-	-	< 0.129	< 0.126	< 0.181	< 0.181
			Co-60	34	- 1	< 0.133	< 0.140	< 0.206	< 0.206
뱨			Zr-95	V <u>22</u>	-	< 0.203	< 0.226	< 0.309	< 0.309
9			Ag-110m	8 	-	< 0.111	< 0.125	< 0.149	< 0.149
수			I-131	7 <u>-</u>	< 6.850	< 0.303	< 0.203	< 0.197	< 6.850
구			Cs-134	< 1.150	< 0.150	< 0.107	< 0.131	< 0.167	< 1.150
			Cs-137	< 1.380	< 0.170	< 0.125	< 0.136	< 0.164	< 1.380
			K-40	72.80	109.8	89.84	75.77	96.75	88.99 ± 13.64
			Mn-54	7.00	-	-	-	< 0.082	< 0.082
배			Co-60	1000	-	-	122	< 0.097	< 0.097
수			Zr-95	0.000	en:	-	: -	< 0.148	< 0.148
구			Ag-110m	11 44	1-0	-	-	< 0.076	< 0.076
부			I-131	78	-	-	1000	< 0.134	< 0.134
긒			Cs-134	850	-	·	-	< 0.081	< 0.081
주1)			Cs-137	544	-	-	Nº	< 0.082	< 0.082
			K-40	/-	_			49.15	49.15
			Mn-54	-	-	< 0.064	< 0.115	< 0.062	< 0.115
-1			Co-60	3/22		< 0.070	< 0.129	< 0.075	< 0.129
취			Zr-95	8-	1=0	< 0.112	< 0.216	< 0.108	< 0.216
수			Ag-110m	92 <u></u>	-	< 0.055	< 0.108	< 0.054	< 0.108
구			I-131		-	< 0.112	< 0.320	< 0.117	< 0.320
주2)			Cs-134	-	-	< 0.056	< 0.112	< 0.054	< 0.112
			Cs-137	F42	140	< 0.062	< 0.118	< 0.059	< 0.118
			K-40	-		80.48	66.85	94.50	80.61 ± 11.29
취			Mn-54	-	-	-		< 0.0350	< 0.035
			Co-60	-	-		2.75	< 0.040	< 0.040
수			Zr-95	-	-	-	-	< 0.059	< 0.059
구			Ag-110m	-	_	-	720	< 0.031	< 0.031
부			I-131	=	-	-	(70)	< 0.043	< 0.043
근			Cs-134	-		-	-	< 0.031	< 0.031
주1)			Cs-137	= =	dans.	-	2.72	< 0.035	< 0.035
			K-40	-	-		1 Dec	37.10	37.10
			Mn-54	_	(<u>—</u>	< 0.106		< 0.153	< 0.153
D			Co-60	-	-	< 0.126		< 0.179	< 0.179
몽			Zr-95	-	-	< 0.179		< 0.266	< 0.286
냉			Ag-110m		-	< 0.096	1	< 0.127	< 0.138
기			I-131	-	< 309.0	< 0.332	Dunning and Shirt	< 0.152	< 309.0
주3)			Cs-134		< 0.440	< 0.087	f .	< 0.135	< 0.440
			Cs-137	=1	< 0.450		The state of the state of	< 0.140	< 0.450
Salara - Primarco		W 0	K-40	-	281.4	55.21	68.64	93.47	124.7 ± 91.51

표 2.8-30 패류의 감마동위원소(계속)

조사	위	치	-n		측정결	과(Bq/k	g-wet)			
지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	평균	
			Mn-54	-	S=	< 0.086	< 0.144	< 0.056	< 0.144	
	1		Co-60	-		< 0.095	< 0.157	< 0.066	< 0.157	
송			Zr-95	-	-	< 0.157	< 0.298	< 0.097	< 0.298	
			Ag-110m	-	-	< 0.078	< 0.128	< 0.050	< 0.128	
0]			I-131	-	< 1.350	< 0.382	< 0.897	< 0.087	< 1.350	
도			Cs-134	< 1.120	< 0.330	< 0.081	< 0.149	< 0.050	< 1.120	
			Cs-137	< 1.410	< 0.360	< 0.084	< 0.134	< 0.055	< 1.410	
			K-40	77.65	174.5	54.12	86.30	69.10	92.33 ± 42.44	
			Mn-54	_		-	-	-	-	
			Co-60	-	- 	2570	-	-	-	
위			Zr-95	-	mu .		-	(1 100 1	-	
玉			Ag-110m	some	-	1022	-		1 <u>80</u>	
그- 주4)			I-131	-	< 17.00	0.00	-	-	< 17.00	
74)			Cs-134	< 1.140	< 0.270	94	-	4	< 1.140	
			Cs-137	< 1.390	< 0.280	.=	(m)	-	< 1.390	
			K-40	69.70	116.9	-		-	93.29 ± 23.59	

- ※ 각 지점별, 연도별 기재되어있지 않은 핵종은 분석이 수행되지 않았음.
- ※ 표준편차는 년도별 측정치의 표준편차임.
- 주1) 배수구부근, 취수구부근 및 양식장 지점은 99년부터 분석 실시하였음.
- 주2) 취수구 지점은 97년에 신규로 지정하여 분석하였음.
 - 주3) 몽냉기 지점은 참고용으로 96년부터 채취를 시작함.
 - 주4) 위도지역은 96년까지 분석실시 하였음.

표 2.8-31 해조류의 감마동위원소

조사	위치	- II	*	축	-2 -7			
지점	방위 (km)	핵종	1995	1996	1997	1998	1999	평균
		I-131	. =		< 0.480	< 0.480	< 0.119	< 0.480
		Mn-54	-	=	< 0.154	< 0.070	< 0.088	< 0.154
5101		Co-58	F1 (50)		< 0.192	< 0.070	< 0.088	< 0.192
нJJ		Fe-59	-		< 0.679	< 0.157	< 0.212	< 0.679
수		Co-60		_	< 0.170	< 0.085	< 0.097	< 0.170
7		Zr-95	-	-	< 0.353	< 0.126	< 0.161	< 0.353
주1)		Ag-110m	-	-	< 0.129	< 0.076	< 0.082	< 0.129
		Cs-134	-	-	< 0.128	< 0.077	< 0.100	< 0.128
		Cs-137	i en	-	< 0.130	0.182	< 0.091	0.182
		K-40	-	-	348.2	46.38	100.3	165.0 ± 131.4

표 2.8-31 해조류의 감마동위원소(계속)

조사	위치			측건	병결과(Bq/	/kg-wet)		
지점	방위 (km)	핵종	1995	1996	1997	1998	1999	평균
	10,7	I-131	-	-	-	72 5 5	< 0.112	< 0.112
		Mn-54			-	34	< 0.089	< 0.089
배		Co-58	- F		N=	9 72	< 0.085	< 0.085
수		Fe-59	-	- 1	(s = s=	: 	< 0.216	< 0.216
구		Co-60	4	<u> </u>	(-	-	< 0.096	< 0.096
부		Zr-95	-	-	-	-	< 0.157	< 0.157
근		Ag-110m	- 1	-	-	TE	< 0.079	< 0.079
주2)		Cs-134	- 1		-	-	< 0.083	< 0.083
		Cs-137	-	-	-	-	< 0.086	< 0.086
		K-40	-		=	-	80.59	80.59
		I-131	-	 0	< 0.390	< 0.410	< 0.204	< 0.410
		Mn-54	-		< 0.037	< 0.117	< 0.113	< 0.117
		Co-58	F -0 8		< 0.044	< 0.117	< 0.117	< 0.117
취		Fe-59	-	-	< 0.136	< 0.238	< 0.266	< 0.266
수		Co-60	-	-	< 0.037	< 0.126	< 0.117	< 0.126
구		Zr-95		-	< 0.081	< 0.221	< 0.210	< 0.221
		Ag-110m	-		< 0.032	< 0.122	< 0.113	< 0.122
		Cs-134	V 2	-	< 0.032	< 0.129	< 0.128	< 0.129
		Cs-137	E		< 0.033	0.176	0.220	0.198 ± 0.022
		K-40 I-131		-	80.48	57.07	95.54 < 0.152	77.70 ± 15.83 < 0.152
		Mn-54					< 0.132	< 0.085
취		Co-58	_	_		_	< 0.086	< 0.086
宁		Fe-59	-	-		-	< 0.202	< 0.202
구		Co-60	_	-	_	20	< 0.085	< 0.085
부		Zr-95	1000	-	===		< 0.145	< 0.145
근		Ag-110m	-	-	-	220	< 0.080	< 0.080
주2)		Cs-134	-	_	50.6	- 54	< 0.090	< 0.090
		Cs-137	-	-	-	-	0.120	0.120
		K-40		-		20	75.59	75.59
		I-131	-	< 0.450	< 0.400	< 0.440	< 0.103	< 0.450
		Mn-54	-	140	< 0.087	< 0.128	< 0.091	< 0.128
		Co-58	_	-	< 0.089	< 0.119	< 0.093	< 0.119
		Fe-59		_	< 0.267	< 0.276	< 0.259	< 0.276
몽냉		Co-60	-	-	< 0.115	< 0.136	< 0.106	< 0.136
기		Zr-95	-	-	< 0.158	< 0.232	< 0.156	< 0.232
8.1		Ag-110m	-	-	< 0.078	< 0.115	< 0.079	< 0.115
		Cs-134	=	< 0.060	< 0.070	< 0.121	< 0.072	< 0.121
		Cs-137	-	< 0.070	0.162	0.052	< 0.089	0.107 ± 0.055
		K-40	-	64.85	56.13	125.1	77.76	80.95 ± 26.60

표 2.8-31 해조류의 감마동위원소(계속)

조사	위치			측정결	클과(Bq/k	g-wet)		_1_
지점	방위 (km)	핵종	1995	1996	1997	1998	1999	평균
		I-131	< 0.2480	< 1.430	< 0.380	< 0.471	< 0.095	< 1.430
		Mn-54	-	-	< 0.062	< 0.048	< 0.041	< 0.062
		Co-58	-		< 0.061	< 0.058	< 0.043	< 0.061
		Fe-59	-		< 0.165	< 0.152	< 0.125	< 0.165
송		Co-60	-	-	< 0.061	< 0.065	< 0.050	< 0.065
이 도		Zr-95	-	-x	< 0.104	< 0.114	< 0.072	< 0.114
<i>x</i>		Ag-110m	_	-	< 0.058	< 0.056	< 0.034	< 0.058
		Cs-134	< 0.342	< 0.260	< 0.061	< 0.064	< 0.031	< 0.342
		Cs-137	< 0.397	< 0.340	0.102	< 0.061	< 0.037	0.102
		K-40	139.0	200.8	136.2	95.1	113.2	136.9 ± 35.76
		I-131	< 0.293	< 1.770			-	< 1.770
위		Cs-134	< 0.394	< 0.490	-	-	-	< 0.490
도		Cs-137	< 0.502	< 0.570	NO.	-	-	< 0.570
		K-40	161.0	801.8		-	_	481.4 ± 320.4
		I-131		< 0.020	-	-	-	< 0.020
동호		Cs-134	420	< 0.260	-	-	-	< 0.260
해수 욕장		Cs-137	-	< 0.340	-	-		< 0.340
7 0		K-40	# 000 H 11 FEII	290.5	1 1 = H	-	Les Victoriales	290.5

- ※ 각 지점별, 연도별 기재되어있지 않은 핵종은 분석이 수행되지 않았음.
- ※ 표준편차는 년도별 측정치의 표준편차임.
- ※ 취수구/배수구/몽냉기는 각각 97하반기/97하반기/96년부터 분석 실시하였음.
- 주1) 95년도에는 배수구지점에서 해조류 시료채취를 할 수 없었음.
- 주2) 배수구부근, 취수구부근은 99년에 신규로 지정하여 분석하였음.

나) 해산식품류의 스트론튬-90

해산식품류(어류, 패류, 해조류)에 대한 스트론튬-90 분석을 위해 발전소 부지주변 1곳(배수구)과 비교지점 1곳(송이도)에서 채취한 시료를 방사화학 분리과정을 거친 후 저준위 알파·베타 계측기로 분석하였으나, 어류에서 0.026~0.128 Bq/kg-wet, 패류에서 0.072~0.188 Bq/kg-wet, 해조류에서 0.005~0.012 Bq/kg-wet로 나타났으며, 이에 대한 결과를 표 2.8-3 2~34에 나타내었다.

표 2.8-32 어류의 스트론튬 방사능

7) 74	위치		측	11				
지점 -	방위	거리(km)	1997	1998	1999	평균		
배수구			0.015	< 0.070	0.240	0.128	±	0.113
배수구부근 ^{주I)}		Ĩ	-		0.135	0.135		
송이도			0.001	< 0.020	0.050	0.026	±	0.025

- ※ Sr-90 분석은 97년 하반기부터 분석 실시하였음.
- ※ 표준편차는 년도별 측정치의 표준편차임.
- 주1) 배수구부근 지역은 99년부터 분석 실시하였음.

표 2.8-33 패류 스트론튬 방사능

지점 -	위치		측정]결과(Bq/kg	Kar	
시심 [방위	거리(km)	1997	1998	1999	평균
배수구			0.013	0.200	0.350	0.188 ± 0.138
배수구부근 ^{주1)}			-	_	0.155	0.155
송이도			0.013	< 0.030	0.130	0.072 ± 0.059

- * Sr-90 분석은 97년 하반기부터 분석 실시하였음.
- ※ 표준편차는 년도별 측정치의 표준편차임.
- 주1) 배수구 부근 지역은 99년부터 분석 실시하였음.

표 2.8-34 해조류 스트론튬 방사능

7) 7)		위치	측기	평균			
지점 -	방위	거리(km)	1997	1998	1999	- श्रम	
배수구			0,005	< 0.060	< 0.010	0.005	
배수구부근 ^{주1)}			-	-	< 0.020	< 0.020	
송이도			0.012	< 0.030	0.100	0.012	

※ Sr-90 분석은 97년 하반기부터 분석 실시하였음.

주1) 배수구 부근 지역은 99년부터 분석 실시하였음.

다) 해산식품류의 방사성옥소

해산식품류(어류, 패류, 해조류)에 대한 방사성옥소 분석을 위해 발전소 부지주변 3곳(배수구, 취수구, 몽냉기)과 비교지점 1곳(송이도)에서 채취한 시료를 용매추출법으로 전처리한후 저준위 알파·베타 계측기로 분석하였으나 검출되지 않았다.

3) 육상식품류(곡류, 채소류, 가금류)

가) 육상식품류의 감마동위원소

곡류에 대한 감마동위원소 분석을 위해 발전소 부지주변 2곳(몽냉기, 양지)과 비교지점 1 곳(장성)에서 수확기에 시료를 구입하여 건조분쇄 후 감마핵종분석기로 분석하였다. 분석결과 인공방사성핵종은 전혀 검출되지 않았고 천연핵종인 K-40이 104.7~121.4 Bq/kg-fresh로나타났다.

채소류에 대한 분석을 위해 발전소 부지주변 2곳(몽냉기, 양지)과 비교지점 1곳(광주)에서 시료를 구입하여 건조분쇄 후 감마핵종분석기로 분석하였다. 분석결과 Cs-137이 불검출~0.676 Bq/kg-fresh로 미량 검출되었고 천연핵종인 K-40은 83.92~200.0 Bq/kg-fresh로 나타 났다.

가금류에 대한 분석을 위해 발전소 부지주변 2곳(홍농, 자갈금)과 비교지점 1곳(장성)에서 시료를 구입하여 건조분쇄 후 감마핵종분석기로 분석하였다. 분석결과 인공방사성핵종은 전지역에서 검출되지 않았으며, 천연핵종인 K-40이 44.31~48.98 Bq/kg-fresh로 나타났다.

육상식품류의 감마동위원소 분석에 대한 5년간 조사결과를 종합 정리한 결과는 표 2.8-3 5~37와 같다.

나) 육상식품류의 스트론튬-90

곡류의 스트론튬-90 분석을 위해 발전소부지 주변 1곳(몽냉기)과 비교지점 1곳(장성)에서 구입한 시료를 방사화학법으로 전처리한 후 저준위 알파·베타계측기로 분석하였으나, 1997년에 0.007~0.019 Bq/kg-Fresh로 검출되었다.

채소류의 스트론튬-90 분석을 위해 발전소부지 주변 1곳(몽냉기)과 비교지점 1곳(광주)에서 구입한 시료를 방사화학법으로 전처리한 후 저준위 알파·베타계측기로 분석하였으나, 1997년에 $0.002\sim0.016$ Bq/kg-Fresh로 검출되었으며, 이에 대한 분석결과를 표 $2.8-38\sim39$ 에나타내었다.

표 2.8-35 곡류의 감마동위원소

조사	위	치		측정결과(Bq/kg-fresh)						
지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	평균	
			Mn-54	-	: :=	< 0.228	< 0.246	< 0.241	< 0.246	
			Co-58	-	-	< 0.225	< 0.235	< 0.230	< 0.235	
			Co-60	-	< 0.160	< 0.292	< 0.299	< 0.262	< 0.299	
몽			Cs-134	< 0.557	< 0.200	-	_		< 0.557	
냉			Cs-137	< 0.596	< 0.130	< 0.262	< 0.248	< 0.252	< 0.596	
기			I-131	< 1.210	-	< 0.320	< 0.290	< 0.354	< 1.210	
			Ru-106	=	ariii	-	< 1.990	< 1.890	< 1.990	
			Ce-144	-	-		< 1.360	< 1.170	< 1.360	
			K-40	56.30	168.33	74.48	140.2	110.3	109.9 ± 41.14	
			Mn-54	-	-	< 0.127	< 0.087	200	< 0.127	
			Co-58	-	-	< 0.213	< 0.245	< 0.067	< 0.245	
			Co-60	-	< 0.160	< 0.065	< 0.235	< 0.132	< 0.235	
얏			Cs-134	< 0.575	< 0.170	6 7.	-	-	< 0.575	
지			Cs-137	< 0.628	< 0.120	< 0.092	< 0.140	< 0.099	< 0.628	
시			I-131	< 1.420	744	< 0.750	< 0.172	< 0.071	< 1.420	
			Ru-106	-	-	-	< 0.879	< 0.724	< 0.879	
			Ce-144	-		-	< 0.561	< 0.512	< 0.561	
			K-40	35.75	177.7	97.86	157.2	118.0	117.3 ± 49.53	
			Mn-54	-	-	< 0.061	< 0.242		< 0.242	
			Co-58	-	<u> </u>	< 0.202	< 0.195	< 0.174	< 0.202	
			Co-60			< 0.142	< 0.092	< 0.166	< 0.166	
장			Cs-134	-	-	-	-	-	-	
성			Cs-137	-	7.0	< 0.904	< 0.100	< 0.183	< 0.904	
주1)			I-131	-		< 0.237	< 0.162	< 0.158	< 0.237	
			Ru-106	-	=7	12	< 0.973	< 1.221	< 1.221	
			Ce-144	-	-	-	< 0.421	< 0.766	< 0.766	
			K-40			94.91	138.5	130.7	121.4 ± 18.98	
			Mn-54	-	-	-	-	1 22	70	
<u> </u>			Co-58	-	-	1.00	-	:	-	
창			Co-60	-	< 0.170	_	-	12/	< 0.170	
선			Cs-134	< 0.128	< 0.180	y. 	=	8=1	< 0.180	
운			Cs-137	< 0.263	< 0.140			-	< 0.263	
사			I-131	< 0.470	-	1-	=	97776	< 0.470	
^r 주1)			Ru-106	-	-	-	-	(-)	-	
T1)			Ce-144	=		72	-	-	=	
			K-40	34.55	174.8		_		104.7 ± 70.12	

^{*} 각 지점별, 연도별 기재되어있지 않은 핵종은 분석이 수행되지 않았음.

(...

[※] 표준편차는 년도별 측정치의 표준편차임.

주1) 97년도부터 비교지점인 고창 선운사지역이 장성지역으로 변경됨.

표 2.8-36 채소류의 감마동위원소

	위치				측정결과(Bq/kg-fresh)						
지점	방위	거리 (km)	핵종	1995	1996	1997	1998	1999	J	3 记	
			Mn-54	-	-	< 0.130	< 0.053	< 0.049	< 0.130		
			Co-58	-	-	< 0.132	< 0.055	< 0.049	< 0.132		
			Co-60	-	< 0.170	< 0.115	< 0.066	< 0.058	< 0.170		
몽			Cs-134	< 0.382	< 0.160	-	-	-	< 0.382		
냉			Cs-137	< 0.479	< 0.120	< 0.119	< 0.052	< 0.243	< 0.479		
기			I-131	< 0.110	< 1.550	< 0.153	< 0.068	< 0.052	< 1.550		
16			Ru-106	-		_	< 0.421	< 0.355	< 0.421		
			Ce-144		-	-	< 0.239	< 0.199	< 0.239		
			K-40	106.4	144.2	95.05	99.06	115.6	112.1	\pm 17.53	
			Mn-54	-	-,	< 0.040	< 0.021	Test Test	< 0.040		
			Co-58	-	-:	< 0.064	< 0.037	< 0.034	< 0.064		
			Co-60	-	< 0.370	< 0.085	< 0.057	< 0.030	< 0.370		
야			Cs-134	< 0.299	< 0.290	17	-	-	< 0.299		
			Cs-137	< 0.359	< 0.180	< 0.032	0.676	< 0.080	0.676		
지			I-131	< 1.066	< 1.550	< 0.065	< 0.047	< 0.047	< 1.550		
			Ru-106	-	-	1	< 0.350	< 0.212	< 0.350		
			Ce-144		_	1 -	< 0.153	< 0.116	< 0.153		
			K-40	113.1	527.1	119.7	129.7	110.6	200.0	± 163.6	
			Mn-54	<u> </u>	-	< 0.025	< 0.018	nie:	< 0.025		
			Co-58	9	-	< 0.039	< 0.020	< 0.032	< 0.039		
광			Co-60	gest a n san da		< 0.039	< 0.048	< 0.025	< 0.048		
주			Cs-134	in the	-		-	10 = 10 . 11	7.7		
37			Cs-137	1.77	-	< 0.016	0.056	< 0.093	0.056		
룡			I-131	- C	-	< 0.027	< 0.022	< 0.048	< 0.048		
주1)			Ru-106	-	-	200	< 0.189	< 0.151	< 0.189		
			Ce-144		-	-	< 0.069	< 0.116	< 0.116		
			K-40	==	-	94.25	88.97	68.54	83.92	\pm 11.09	
			Mn-54			-		-	-		
立			Co-58	(-	-	-	_	-		
창			Co-60	1-	< 0.160	-	-	_	< 0.160		
선			Cs-134	< 0.783	< 0.160	-	-	-	< 0.783		
			Cs-137	< 1.010	< 0.120		-	-	< 1.010		
운			I-131	< 0.280	< 1.550	-	-	-	< 1.550		
사			Ru-106	+>	-	-	-	-	-		
주1)			Ce-144	20	-	-	-	_	-		
			K-40	106.3	121.9	-	-	-	114.1	\pm 7.81	

[※] 각 지점별, 연도별 기재되어있지 않은 핵종은 분석이 수행되지 않았음.

[※] 표준편차는 년도별 측정치의 표준편차임.

주1) 97년도부터 비교지점인 고창 선운사지역이 광주고룡 지역으로 변경됨.

표 2.8-37 가금류(계란)의 감마동위원소

l wl	위치	-11 "P		측정결					
지점	방위 (km)	핵종	1995	1996	1997	1998	1999	평균	
		Cs-134	< 0.507	< 0.250	1 -	-	-	< 0.507	100
자		Cs-137	< 0.504	< 0.290	< 0.183	< 0.192	< 0.182	< 0.504	
		I-131	-	< 1.560	< 0.217	< 0.178	< 0.373	< 1.560	
갈		Ru-106	(-	-	-	< 1.420	< 1.520	< 1.520	
급		Ce-144	-	-) ==	< 1.040	< 0.948	< 1.040	
		K-40	39.30	49.13	45.99	37.45	50.76	44.53	± 5.28
	The state of the s	Cs-134	< 0.729	< 0.260) State	-	-	< 0.729	
용		Cs-137	< 0.457	< 0.310	-	-	-	< 0.457	
대		I-131	-	< 1.540	o 	=	-	< 1.540	
기 주1)		Ru-106	-	-	-	-	-	-	
1.1)		Ce-144		_	7/2	-	-	-	
		K-40	43.00	54.95	22			48.98	± 5.98
		Cs-134	-	=	_	_	T -	-	
장		Cs-137	-	-	< 0.098	< 0.063	< 0.063	< 0.098	
성		I-131	-	-	< 0.175	< 0.158	< 0.086	< 0.175	
o 주1)		Ru-106		_	-	< 0.771	< 0.470	< 0.771	
7.11		Ce-144	-		-	< 0.321	< 0.340	< 0.340	
		K-40	-	322	46,92	38.57	47.44	44.31	± 4.06

- ※ 각 지점별, 연도별 기재되어있지 않은 핵종은 분석이 수행되지 않았음.
- ※ 표준편차는 년도별 측정치의 표준편차임.
- 주1) 97년도부터 비교지점인 용대지역이 장성지역으로 변경됨.

표 2.8-38 곡류의 스트론튬 방사능

-) -)		위치	축	-N -7			
지점	방위	거리(km)	1997	1998	1999	평균	
몽냉기			0.019	< 0.050	< 0.080	0.019	
장성			0.007	< 0.050	< 0.030	0.007	

※ Sr-90 분석은 97년 하반기부터 분석 실시하였음.

표 2.8-39 채소류 스트론튬 방사능

7] 7]	23 - 85 - 85 - 85 - 85	위치		7F4 7		
지점	방위	거리(km)	1997	1998	1999	평균
몽냉기			0.016	< 0.080	< 0.070	0.016
광주 고룡			0.002	< 0.040	< 0.030	0.002

* Sr-90 분석은 97년 하반기부터 분석 실시하였음.

3. 발전소의 현황

3.1 외 관

3.1 외 관

영광 원자력 5,6호기는 격납건물, 1차 및 2차 보조건물, 터빈건물, 비상디젤발전기건물, 핵연료건물, 취수구조물, 출입통제건물 등의 개별시설과 방사성폐기물건물, 보조보일러 및 자재창고 등의 공유시설로 구성된다. 각 건물의 배치는 그림 3.1-1에 제시하였다(조감도 참조).

가. 격납건물

원자로 건물은 원자로 및 원자로 냉각재계통을 완전히 밀폐하며 냉각재 상실사고와 같은 사고에서도 환경에 대한 방사성 물질의 누출이 24시간 동안 전체적으로 0.1%를 초과하지 않도록 설계되었다.

나. 터빈건물

터빈 발전기와 기타 냉각수 계통으로 구성되어 있는 건물로서 터빈 발전기의 중심은 원자로건물의 중심선과 일치하여 원자로 건물로부터 오는 주증기 배관을 원활하게 하며, 냉각수 계통은 안전성에 관련되어 있지 않으나 펌프 및 열교환기는 중복 설계되어 있어 설계요구조건을 만족하고 있다.

다. 1차 보조건물

1차 보조건물은 격납건물과 터빈건물 사이에 위치하며, 철근콘크리트의 전면기초, 전단벽, 내부 격벽 및 슬래브로 구성된다. 건물 외부의 콘크리트 전단벽과 지붕은 방사능 차폐 및 비산물 방호역할을 한다. 1차 보조건물은 2차 보조건물과 구조적으로 일체되어 있으며, 터빈건물과는 서로 공유하는 지중벽에 의해 터빈건물의 기초와 연결되어 있다.

라, 2차 보조건물

2차 보조건물은 1차 보조건물과 일체로 연결되어 있으며 공통 전면기초 위의 전단벽과 슬래브로 구성된 철근콘크리트 구조물이다. 건물 외부의 콘크리트 전단벽과 지붕은 방사능 차폐 및 비산물 방호역할을 한다. 각 층은 연속슬래브, 보 및 내부벽체로 구성된 철근콘크리트 구조물이다.

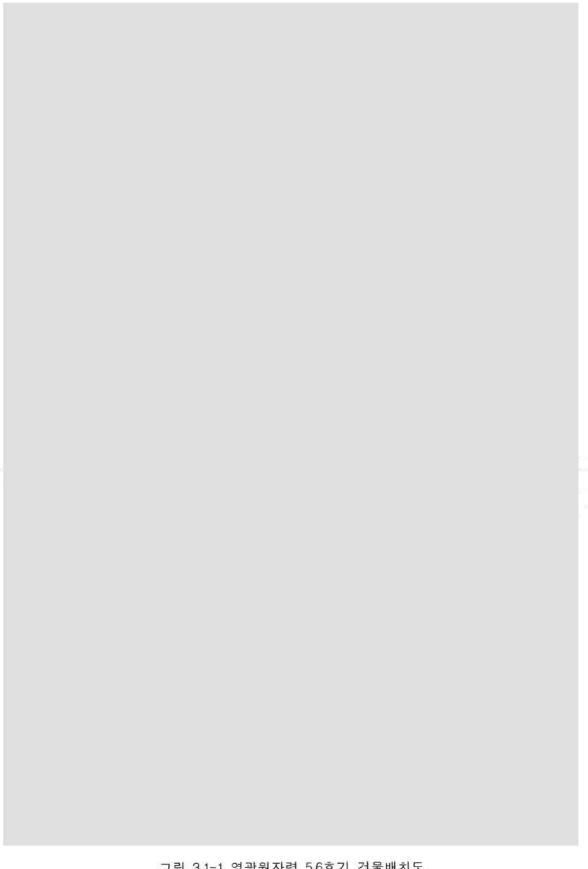


그림 3.1-1 영광원자력 5,6호기 건물배치도

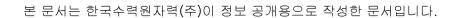
마, 핵연료 건물

핵연료건물은 원자로격납건물에 인접해 있으며, 격납건물을 사이에 두고 보조건물 맞은 편에 위치한다. 핵연료건물은 정지면 위의 전면기초로 지지되는 철근콘크리트 전단벽 및 격막구조로 되어 있다. 충슬래브는 2방향 슬래브-보 구조와 텍크플레이트 위의 콘크리트 슬래브를 강재 보로 지지하는 구조들로 되어 있다. 지붕은 강재 보로 지지되는 텍크플레이트 콘크리트 슬래브 구조이다. 외부 콘크리트 전단벽과 지붕은 방사능 차폐 및 비산물 방호역할을 한다. 내벽은 철근콘크리트 구조이다. 핵연료 건물의 기초는 인접한 다른 건물의 기초와분리된다. 핵연료건물의 출입구는 트럭의 접근이 용이하도록 정지면 상에 위치하며 건물 내부에는 천정 크레인이 설치된다. 핵연료건물 내부에는 사용후연료저장조와 핵연료재장전수 탱크 등이 있다.

바. 비상디젤발전기건물

내진범주 1급 구조물로서 2차 보조건물 북측과 출입통제건물 동측에 접하여 위치하며, 철 근콘크리트의 전면기초전단벽, 내부격벽 및 슬래브로 구성된다. 비상디젤발전기건물은 2차보조건물 및 출입통제건물과 구조적으로 분리되어 접하는 건물과 별도의 전단벽이 설치된 구조물이다.

사. 기타


기체방출물은 보조건물, 터빈건물, 격납건물, 핵연료건물 및 방사성폐기물건물 등의 배기구를 통해 직접 환경으로 방출된다. 기체방사성폐기물계통의 방출은 방사성폐기물건물의 배기구를 통해서 이루어진다. 기체방사성물질 방출점은 그림 3.1-2에 제시하였다.

액체방사성폐기물계통에 의해 처리된 액체폐기물은 순환수 배수로를 통해 전량 방출되며, 액체폐기물의 방출 여부는 방사성폐기물 감시탱크에서 결정된다.

3.2 원자로와 증기·전기계통

3.2 원자로와 증기 · 전기계통

영광 원자력 5,6호기는 가압경수형 핵증기공급계통으로부터 증기를 공급받아 터빈발전기를 돌림으로써 전기를 발생시킨다. 핵증기공급계통과 터빈발전기는 한국중공업주식회사가 공급하며 원자로 격납건물을 비롯한 발전소의 종합설계는 한국전력기술주식회사가 수행한다.

가. 핵증기공급계통

133

핵증기공급계통은 원자로의 연쇄 핵분열 반응에 의해 생성된 핵분열에너지를 이용하여 증기를 발생시키므로써 터빈발전기 구동용 증기를 공급하는 역할을 한다. 각 호기의 핵증기공급계통(NSSS)은 가압경수형 원자로(PWR), 원자로냉각재계통(RCS) 및 기타 관련 보조계통으로 구성된다.

원자로는 핵분열에너지를 발생시키는 노심, 노심을 지지하는 노심지지구조물, 제어장치 및 이들을 에워싸고 있는 원자로용기로 구성된다. 원자로용기는 원통형의 용기로서, 밑부분은 반구형이며, 윗덮개는 플랜지로 접속되어 있어 필요시 해드를 떼어낼 수 있다. 윗덮개 플랜지와 노심 상단 사이에는 원자로냉각재 입구노즐과 출구노즐이 동일 수평면상에 설치되어 있다. 원자로용기 본체는 탄소강으로 제작되며 냉각재와 접촉하는 내면은 스텐레스강으로 라이닝된다.

원자로 노심은 모두 177개의 연료집합체로 이루어져 있으며 각 연료집합체는 236개의 원전연료봉으로 이루어진다. 모든 연료집합체는 기계적인 설계에 있어서는 동일하나 농축도는 노심 영역에 따라 다르며, 노심 평균 U-235의 농축도는 2.33 w/o이다. 원전연료봉은 축방향의 움직임을 제한하기 위해 End fitting으로 지지되며 원전연료봉 사이는 연료집합체의 설계수명기간동안 원전연료봉 사이의 간격을 유지하고 또한 축방향의 움직임을 제한하기 위해 그리드(Grid)로 지지된다. 원전연료봉은 이산화우라늄(UO2)을 소결한 원통형 펠릿(Pellet)을 지르칼로이관으로 피복하여 제작한다. 초기 노심의 원전연료 장전량은 우라늄 무게로 75.93MT이다. 제 1주기 설계의 특징은 4 영역 장전모형으로, 노심은 핵연료집합체내의 핵연료봉 농축도에 따라 A, B, C 및 D 형의 4가지 형태로 구분된다. 이중 B, C, D형의 핵연료집합체는 그림 3.2-2에 나타나 있는 바와 마찬가지로 다시 두가지 농축도의 핵연료봉으로 이루어진 이른바 농축도 구획화가 되어 있다. 이와 같이 농축도 구획화를 하는 것은 장기간에 걸쳐 국부적인 핵연료집합체별 출력 분포를 좀 더 잘 제어하기 위해서다. 초기노심에 대한 핵연료 장전모형, 핵연료 농축도와 가연성독물질의 배치도는 그림 3.2-1과 그림 3.2-2에 나타나 있다. 표 3.2-1은 초기노심의 노심평균 농축도, 노심 연소도 등을 보여준다.

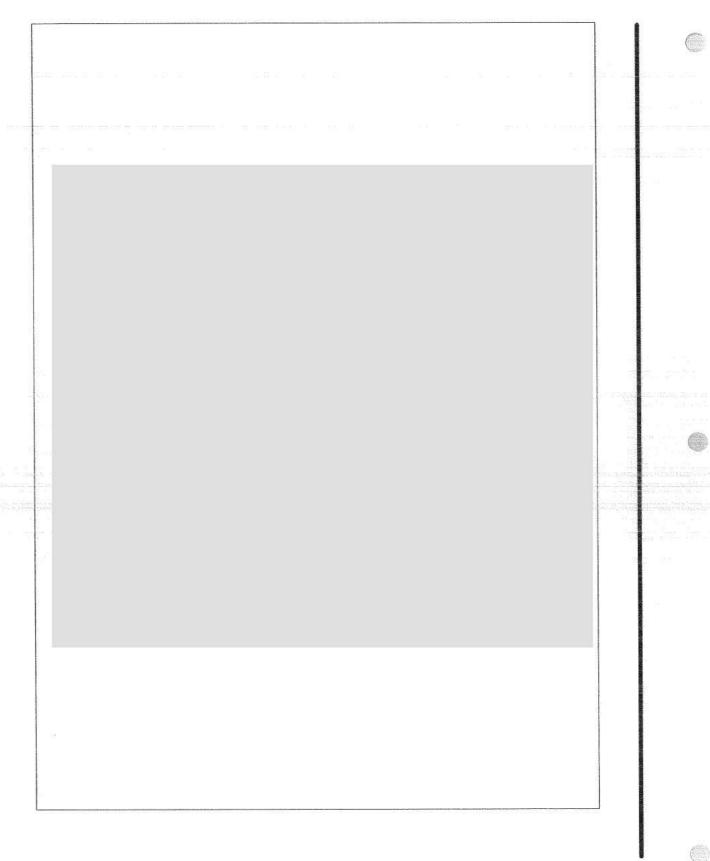
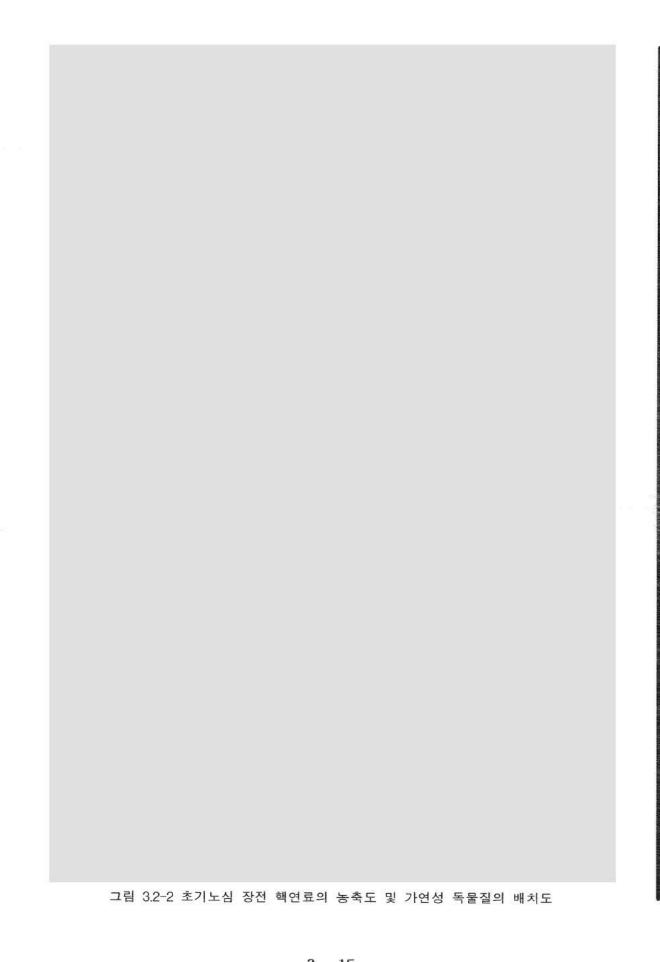



그림 3.2-1 초기노심 핵연료 장전모형

자료: 영광원자력 5,6호기 최종안전성분석보고서.

원자로의 제어는 중성자를 흡수하는 제어봉집합체 및 원자로냉각재 속에 녹아있는 붕산에 의해 수행된다. 제어봉집합체는 출력조정과 온도변화에 의한 작은 반응도 변화의 제어에 쓰이고 또한 제어봉을 노심 속으로 자유 낙하시키므로써 원자로를 트립(Trip)시킬 수 있다. 붕산은 원자로 운전정지 시에 원자로냉각재계통 내로 첨가되며 기동 시에는 일부 제거된다. 붕산은 또한 노심의 전 수명기간에 걸쳐 연료의 소비나 핵분열생성물의 축적 등에 의한 반응도 변화효과를 보상한다.

원자로냉각재계통은 원자로용기에 대칭으로 연결된 2개의 폐쇄 유로로 구성되며 각 유로는 내경이 42인치인 하나의 출구관, 한 대의 증기발생기, 내경이 30인치인 두 개의 입구관및 2대의 원자로 냉각재 펌프로 구성된다. 두 유로 중 하나에는 전기가열식 가압기가 연결되며 4개의 입구관과 2개의 출구관에는 안전주입관이 연결된다. 원자로냉각재계통은 정상시 2,250psia의 고압으로 가압되어 운전된다. 원자로 냉각재는 입구관을 통해 원자로용기의상부로 들어가서 원자로 용기벽과 노심 배럴(Barrel)사이를 흘러 내려와 다시 노심을 통해위로 호른 후 출구관을 통해 원자로 용기를 빠져나간다. 원자로용기를 빠져나온 원자로 냉각재는 두 대의 수직 U자관 증기발생기의 관측을 흐르면서 핵분열에너지를 주증기계통으로전달한다. 원자로 냉각재 펌프는 원로냉각재를 원자로 용기로 되돌려 보낸다.

핵증기공급계통의 정격 열출력은 2,825MWt이며 노심의 열출력은 2,815MWt이다. 두 대의 증기발생기는 원자로 노심에서 연쇄 핵반응에 의해 발생된 열을 원자로냉각재에 의해 전달 받아 터빈발전기 구동용 증기를 발생시킨다. 각 증기발생기는 수직형 U자관 열교환기로 원자로냉각재는 관측으로 흐르며 2차냉각재는 동체측으로 흐른다. 증기발생기에 내장되어 있는 습분분리장치는 정상운전 시의 증기의 수분 함유량을 일정한 수준이하로 제한한다. 4대의 원자로 냉각재 펌프는 전동기로 구동되는 단단형 원심펌프이며 펌프축은 기계적 밀봉으

로 밀봉된다. 펌프의 밀봉상태는 밀봉계통의 온도와 압력 감지장치에 의해 감시된다. 원자로 냉각재 펌프의 동력공급계통은 정상운전 시 원자로 노심냉각에 필요한 유량이 확보되도록 설계된다. 원자로냉각재 유로 중 하나의 유로에 연결된 전기가열식 가압기는 정상운전 시의원자로냉각재계통 압력을 유지하고 부하변동시의 압력변동을 제한한다. 또한 계통 천이시는 계통의 압력변동을 설계범위 내로 유지시킨다. 원자로냉각재계통은 모두 누설이 없는 부품으로 구성되어 있으며 방사능이 계통 밖으로 누출되지 않도록 설계된다.

가능성이 매우 희박한 냉각재 상실사고 시에는 고압 및 저압 주입으로 이루어진 안전주입계통의 붕산수가 원자로냉각재계통 내로 주입된다. 이렇게 함으로써 사고 시 노심의 손상과핵분열생성물의 유출을 막고 적절한 원자로 정지 여유도를 보장한다. 안전주입계통은 또한격납건물 집수정에 모인 붕산수를 재순환시키므로써 노심을 사고후 장기간 계속 냉각시킬수 있도록 설계된다.

그 외의 보조계통으로는 원자로냉각재계통의 봉소 농도를 포함한 화학조건과 냉각재의 순도를 유지하고 원자로냉각재 온도의 변화로 인한 원자로냉각재의 체적을 조절하는 화학 및체적제어계통과 원자로 정지 시 붕괴열을 제거하는 운전정지냉각계통 등이 있다. 핵증기공급계통의 개략도는 그림 3.2-3과 같다.

나. 증기 및 동력변환계통

영광원자력 5,6호기의 증기 및 동력변환계통은 터빈발전기와 그와 연관된 복수 및 급수계통으로 구성된다. 증기 및 동력변환계통은 원자로의 핵분열에너지를 증기발생기를 통해 전달받아 터빈에 의해 기계에너지로 바꾼 후 발전기를 통해 전기에너지로 변환시킨다.

터빈은 1800 rpm, 직렬배열 6유동, 43인치의 최종단 회전익을 가지는 재열형식이다. 터빈은 1대의 복류 고압터빈, 3대의 복류 저압터빈 그리고 2개의 재열단을 가지는 2대의 습분분리재열기를 포함하고 있다. 직렬구동 발전기(direct-driven generator)는 22 kV, 3상, 60 Hz의 1219 MVA 정격의 전도체 냉각 방식이다. 터빈발전기의 정격전기 출력은 1,050MWe이다. 그외에 터빈/발전기 베어링윤활유계통, 고압유압유계통(high pressure hydraulic fluid system), 디지털 제어 및 감시계통, 터빈증기밀봉계통, 과속방지 장치, 터닝기어, 발전기밀봉유계통, 고정자냉각수계통, 그리고 여자기계통이 포함되었다. 핵증기공급계통의 증기발생기로부터 공급된 증기는 주증기계통에 의해 축밀봉계통, 주급수 및 보조급수펌프 구동용 터빈, 공기추출기등의 각종 보조 기기와 증기공급의 주목적인 주터빈이나 재열기가 공급된다. 2대의 증기발생기로부터 생성된 증기는 정지밸브와 조속밸브를 거쳐 고압터빈으로 들어간다. 고압터빈으로의증기유입량은 조속밸브에 의해 제어되며 긴급 시에는 그 전단에 있는 급속작동의 정지밸브에 의해 차단된다. 고압터빈에서 배기된 증기는 2대의 습분분리재열기를 거치면서 수분이 제거되고 2단계로 재열된 후 3대의 저압터빈으로 들어간다. 고압추기증기가 1단계 재열용 에너지를

공급하며 주증기가 2단계 재열용 에너지를 공급한다. 저압터빈은 3대의 복수기로 증기를 배기하며 팽창된 증기는 이곳에서 응축된다. 비응축 기체는 진공펌프에 의해 복수기로부터 제거되며 대기로 배기된다. 증기가 가지고 있는 열은 복수기에서 순환수로 전달된다.

복수기는 저압터빈 배기 플랜지에 팽창연결부로 연결되어 있는 큰 열교환기이다. 복수기는 또한 큰 부하 감발 시 터빈 바이패스계통의 열흡수부로서의 역할도 한다.

터빈 바이패스계통은 정격 증기유량의 40%를 복수기로 바이패스할 수 있으며 필요시 추가로 정격증기유량의 15%를 대기로 방출시킬 수 있다. 따라서 터빈이나 원자로의 운전정지없이 큰 부하변동을 흡수할 수 있다.

순환수계통은 터빈싸이클에서 방출되는 열을 제거하기 위해 복수기로 냉각수를 연속적으로 공급한다. 순환수계통은 서해의 해수를 수직형 순환수 펌프에 의해 복수기로 보낸 후 다시 서해로 내보낸다.

복수기에서 응축된 복수는 복수의 적절한 화학적 조건을 만족시키기 위해 3대의 복수펌프에 의해 복수 탈염계통으로 보내져 처리된 후 3열로 구성된 3단계의 저압 급수가열기에서 가열된다. 가열된 복수는 다시 탈기급수가열기로 보내지며 여기서 더욱 가열되고 탈기된다. 탈기된 복수는 중력에 의해 2대의 탈기기 저장탱크로 배수된다. 급수는 탈기기 저장탱크로 부터 2단계의 급수펌프에 의해 2열로 구성된 3단계의 고압급수가열기로 보내져 마지막으로 가열된 후 증기발생기로 보내어진다. 급수가열기로 공급되는 증기는 고압 및 저압터빈으로 부터 추기된다. 고압급수가열기와 수분분리 재열기로부터 배수된 물은 재사용을 위해 탈기급수 가열기로 보내지며 저압급수가열기로 배수된 물은 복수기로 보내진다. 동력변환 계통설계 특성을 표 3.2-2에 나타내었으며, 증기 및 동력변환계통의 개략도와 보증출력 조건시 터빈싸이클 열 평형도는 각각 그림 3.2-4와 그림 3.2-5와 같다.

표 3.2-2 동력 변환계통 설계특성

터빈발전기 출력, MWe (정격출력 조건/밸브 전개조건) 터빈 형식 최종단 희전익 길이, in. (cm) 주복수기 용량, Btu/hr (kcal/hr) (순환수 입구온도, 71.5°F (21.9°C)기준임) 복수기 배압 설계치 (3개 셀의 평균치), in. HGA (mm) 재열기 단수 급수 가열기 단수 회전 속도, rpm 발전기 정격 출력, MVA 발전기 전압, kV	1,050/1,093 TC6F-43" LSB 43 (109) 6.268×10 ⁹ (1.5795×10 ⁹) 1.5 (38.1) 2 7 1,800 1,219 22
발선기 선납, KV 역률 단락비	0.9 0.58

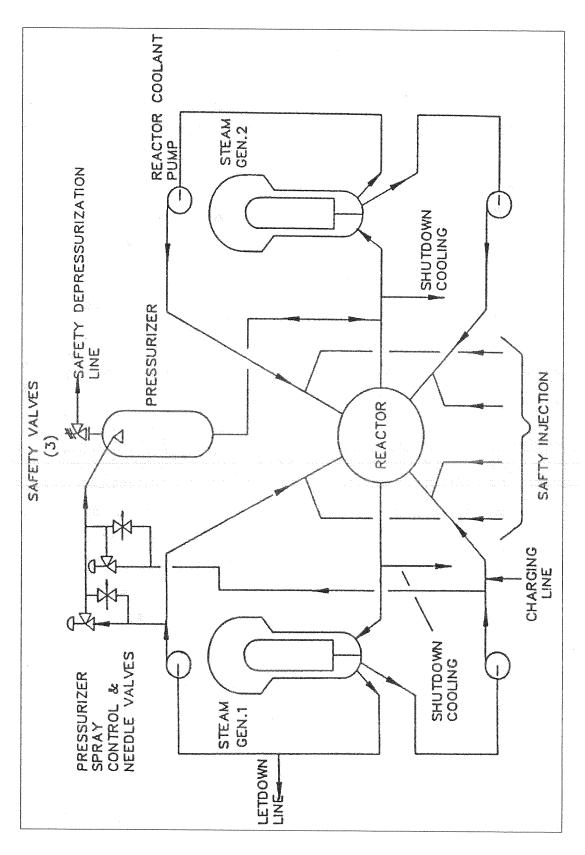


그림 3.2-3 핵증기 공급계통

그림 3.2-4 증기 및 동력 변환계통

3.3 연료저장시설

3.3 연료저장시설

3.3.1 원전연료저장시설

사용후연료는 원자로에서 인출된 후 재처리시설로의 이송을 위하여 이송용기(Shipping Cast)에 넣어질 때까지 수중에서 취급된다.

원전연료집합체 취급운전은 물 속을 통하여 취급상황을 육안으로 볼 수 있으며, 또한 물은 사용후의 잔열을 제거시켜 줄뿐만 아니라, 방사선 차폐역할을 한다.

원전연료 취급 및 저장시설은 크게 두 부분으로 나누어진다. 하나는 원전연료 재장전수조 및 원전연료 운반수로이며 이 지역은 원전연료 재장전 작업 시에만 붕산수로 채워진다. 다른 하나는 사용후연료 저장조이며 이 지역은 항상 붕산수로 채워져 있어 작업자들의 접근이가능하도록 되어있다.

이들 두 지역은 수송관(Transfer Tube)에 의해 연결되고 있고 이 수송관을 통하여 수중 원전연료 운반 차가 원전연료를 운반한다.

원전연료 수송관을 통하여 사용후연료 저장조로 옮겨진 원전연료집합체는 저장조 크레인 (Bridge Crane)에 달려 있는 원전연료 취급 기기에 의해 사용후연료저장대(Storage Rack)에 저장된다.

신 원전연료 집합체는 보통, 원전연료 재장전 작업이 시작되기 직전에 현장으로 옮겨진다. 현장에서 신 원전연료집합체를 인수검사 후 신 원전연료 저장조에 저장한다.

원전연료 교체시 재장전수탱크의 물의 체적 및 재장전수조와 사용후연료저장조의 수위는 운영기술지침서에 따라 유지 관리된다. 원전연료교체시 재장전수조 및 핵연료 운반수로는 재장전수탱크의 붕산수에 의해 채취지게 되고 재장전수탱크의 물은 원자로 보충수탱크의 탈 염수와 붕산혼합탱크의 붕산을 혼합시켜 생성한다. 사용후연료저장조의 보충수로 붕산수는 재장전수탱크에서, 비붕산수는 복수저장탱크나 탈염수계통에서 공급되도록 설계되어 있다.

사용후연료저장조 물 표면에서 증발되어 기체로 유출되는 추정 값은 별도로 계산하지 않고 GALE 전산프로그램을 이용하여 핵연료건물 전체의 기체 방사성물질의 방출량으로 계산하며 그 계산결과는 본 보고서 3.4절에 기술하였다.

가. 신 원전연료 저장시설

신 원전연료 저장시설은 신 원전연료 저장조와 신 원전연료저장대(Storage Rack)로 구성되다.

신 원전연료 저장조는 신 원전연료집합체를 건조한 상태로 저장하며 최소한 원전연료집합 체 72개를 저장할 수 있도록 설계한다. 신 원전연료 저장조는 원전연료건물의 일부에 속하 며 철근 콘크리트로 건설한다.

신 원전연료 저장대는 신 원전연료가 미임계상태를 유지하도록 설계되어있다. 저장대중 신 원전연료 집합체와 접촉하는 부위는 풀림 처리한 오스테나이트계 스텐레스강으로 제작하 며 저장대 지지구조물은 탄소강으로 제작한다. 신 원전연료 저장대는 원전연료 취급 시 원 전연료 집합체의 낙하에 의한 충격하중을 견딜 수 있으며 낙하된 집합체는 저장격자 틈 사 이로 끼이지 않도록 설계한다.

신 원전연료 저장구역에는 방사선 감시계통을 설치하여 원전연료가 임계상태에 도달하는 지의 여부를 감시하고 작업자의 방사선피폭을 방지할 수 있도록 한다.

나. 사용후연료 저장시설

사용후연료 저장조는 철근콘크리트로 건설하며 내부벽 및 바닥은 스텐레스강판으로 피복된다. 또한 저장조에는 사고로 인하여 냉각수가 배수되는 것을 방지하기 위하여 어떠한 배수구도 설치하지 않는다. 사용후연료는 이 저장조를 채운 4,000~4,400ppm의 붕산수내에 저장된다. 이 저장조에는 20년의 사용후연료가 저장될 수 있다.

사용후연료 저장조 바닥에는 사용후연료를 저장할 수 있는 고밀도 저장대(High Density Storage Rack)가 설치되어 있다. 사용후연료저장대는 오스테나이트계 스텐레스강으로 되어 있으며 내식성이 좋아 붕산수내에서 잘 견딜 수 있다. 사용후연료저장대 구조는 원전연료 교체작업시 집합체의 낙하에 의한 충격하중을 견딜 수 있으며, 인접한 저장격자 틈사이로 원전연료가 끼이지 않도록 설계한다.

사용후연료는 원전연료가 미임계상태로 유지될 수 있도록 저장대를 배열한다.

사용후연료 저장조에는 수위계측장치가 설치되어 있어 만일 일정수위 이하로 떨어지면 주 제어실에 경보가 울리도록 설계된다. 이 구역에는 사용후연료 취급 시 발생할 수 있는 사고를 감사하는 방사선 감시계통을 설치하여 방사선으로부터 작업자를 보호할 수 있도록 한다. 또한 사용후연료에서 나오는 방사선은 저장용수에 의해 차폐되므로 작업자보호가 가능하다.

다. 원전연료 재장전수조(Refueling Pool)

원전연료 재장전수조는 철근콘크리트 구조물로서 원전연료 재장전 작업 시 붕산수로 채워 져 수조를 형성한다. 이 수조는 원전연료 운반도중 작업자들의 방사선피폭선량을 제한치 이 하로 유지시킬 수 있는 충분한 높이까지 붕산수로 채워진다.

원전연료 재장전수조에는 충분한 공간이 마련되어 있어 원자로 상부 내장품(Reactor Upper Internals) 및 여러 가지 원전연료 취급기기들을 설치할 수 있다.

라. 원전연료 운반수로(Fuel Transfer Canal)

원전연료 운반수로는 원전연로 재장전수조로부터 원자로 격납건물까지 연장되어 있는 원 전연료 이동 통로이다. 이 수로에는 원전연료 재장전수조와 같은 높이까지 콘크리트 차폐 벽이 설치되어 있다.

이 원전연료 운반수로는 원전연료 수송관과 연결되며 이 관을 통하여 원전연료 집합체가 격납 건물에서 원전연료건물로 운반된다. 원전연료 재장전 기간 이외에는 수송관은 원자로 격납건물 건전성(Integrity)을 유지할 수 있도록 원전연료 재장전 수조 쪽은 블라인드 플랜지(Blind Flange) 로 봉하고 사용후연료 저장조 쪽은 밸브로 막아 격납건물로부터의 기체 및 액체누출을 막는다.

3.3.2 사용후연료 저장조 냉각 및 정화계통

사용후연료 저장조 냉각 및 정화계통은 원자로로부터 옮겨진 사용후연료에 의해 생성되는 붕괴열을 제거하여 저장조의 수온을 설계값 이하로 유지시키며 저장조 및 원전연료 운반수로의 물로부터 불순물 및 방사성 물질을 제거하여 냉각수를 청결하게 유지시키기 위한 계통이다. 본 계통에 대한 계통도는 그림 3.3-1에 도시되며, 계통기기 설계값은 표 3.3-1에 제시된다.

가. 계통설명

사용후연료 저장조 냉각 및 정화계통은 크게 다음과 같은 2개의 부계통으로 구성되어 있다.

- 사용후연료 저장조 냉각계통
- 사용후연료 저장조 정화계통
 - 각 계통에 대한 상세한 설계내용은 아래와 같다.

1) 사용후연료 저장조 냉각계통

사용후연료 저장조 냉각계통은 원자로로부터 방출된 사용후연료에 의해 생성되는 붕괴열을 제거시킬 수 있도록 각각 100% 용량을 갖고 있는 두 개의 냉각회로로 구성되며 각 냉각회로는 수평원심펌프, U 튜브형 열교환기, 밸브, 배관 및 운전에 필요한 계측제어설비 등으로 구성되어 있다.

본 계통은 저장된 사용후연료로부터 발생되는 붕괴열을 제거하여 저장조의 수온이 정상 시 60℃(140°F) 이하로 유지되도록 한다. 동 계통의 정상 운전기간에는 한 대의 저장조 냉각 펌프(Fuel Cooling Pump)가 저장조로부터 물을 흡입하여 냉각 열교환기를 거친 다음 다시 저장조로 보낸다.

냉각펌프의 흡입관은 원전연료집합체보다 충분히 높은 위치에서 저장조 벽을 관통한다. 싸이폰현상에 의해 냉각수가 배수되는 것을 방지하기 위하여 각 배출 배관에는 싸이폰방지를 위한 설비가 마련된다.

사용후연료 저장조의 냉각수 증발 및 누설량을 보충하기 위해 정상운전 시에는 비내진범 주 탈염수계통으로부터 보충수를 공급받으며 비상시에는 응축수 저장탱크(Condensate Storage Tank)와 연결된 내진범주 I의 다중라인을 통해 보충수를 공급받을 수 있다. 재장 전수 탱크(Refueling Water Tank)는 동 계통에 붕산수를 공급해 주는 역할을 한다.

2) 사용후연료 저장조 정화계통

사용후연료 저장조 정화계통은 원심형 펌프, 여과기, 탈염기 및 후단여과기로 구성되어있다.

표 3.3-1 사용후연료저장조 냉각 및 정화계통 기기 설계값

11 0.0 1 146 12	·교사당도 경역 및 경외계층 기기 글게따
1. 사용후연료저장조 냉각펌프(9	-132-N202)
ㅇ대수	
0 형식	수평, 원심형
	3,000 gpm
◦설계수두	74ft
o모터마력	75hp 170
o재질	오스테나이트계 스텐레스강(SA 351-CF3M)
2. 사용후연료 저장조 정화펌프	E(9-135-M213)
o 대수	2
o형식	수평, 원심형
o 유량	300 gpm
o설계수두	319 ft
o 모터마력(Max.)	52.4 hp
o 재질	오스테나이트계 스텐레스강
3. 사용후연료 저장조 냉각열교	환기(9-133-N204)
o대수	2
o 형식	수평 쉘 - U 튜브형
o유량	튜브 - 3,000 gpm, 쉘 - 3,500 gpm

표 3.3-1 사용후연료저장조 냉각 및 정화계통 기기 설계값(계속)

	o설계압력	11 kg/cm ³ g (150 psig)
***************************************	o설계온도	튜브 - 200°F, 쉘 - 200°F
	o 열전달량	32.5×10^6 Btu/hr
	o 재질	튜브측 : 오스테나이트계 스텐레스강(SA 688-TP304)
-		쉘 측 : 탄소강(SA 516-70)
	4. 사용후연료 저장조 정화여과기	(9-135-N211)
	o 대수	2
	o 형식	카트리지형
	o 유량	300 gpm
	o설계압력	200 psig
	o 설계온도	200°F
	o 재질	오스테나이트계 스텐레스강
	o 입자제거능력	98 % (6 micron 이상)
	5. 사용후연료 저장조 정화계통 특	탈염기
	o 대수	2
	○유량 	300 gpm
	• • • • • • • • • • • • • • • • • • •	_

ㅇ탈염기 제염계수

• Total resin volume

- Cs, Rb

2

- 기타핵종

10

 70 ft^3

6. 사용후연료 저장조 탈염기 여과기(9-135-N211)

o 대수

2

o 형식

카트리지형

o 유량

300 gpm

o설계압력

200 psig

o설계온도

200 °F

ㅇ재질

오스테나이트계 스텐레스강

표 3.3-1 사용후연료 저장조 냉각 및 정화계통 기기 설계값(계속)

7. 사용후연료 저장조 부유물 제거이	d ⊒l z] (0_135_N211)
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	147/(0 100 1V211)
ㅇ대수	2
o형식	카트리지형
o 유량	150 gpm
o설계압력	150 psig
o설계온도	200 °F
o 재질	오스테나이트계 스텐레스강
o 입자제거능력	98 % (6 micron 이상)

자료: 영광원자력 5,6호기 최종안전성분석보고서.

본 계통은 표 3.3-2 에 제시된 비방사능 농도를 기준으로 사용후연료 저장조의 물을 정화시켜 작업자의 피폭선량이 0.025mSv/hr 이하를 충분히 만족시키도록 탈염효과¹⁾를 고려하여설계되었으며, 발전소 정지후 초기 30일간 1차 냉각재, 사용후연료저장조 냉각수, 재장전수조 냉각수가 동시에 정화되며, 그 후에는 사용후연료저장조 냉각수만 정화되도록 한다(표 3.3-2).

표 3.3-2 사용후연료저장조 및 재장전수조내 설계기준 및 예상 비방사능

핵 중	설계기준	예상	핵 종	설계기준	예상
N-16	0.00E+00	0.00E+00	I-131	1.10E+02	2.10E+00
Kr-85M	1.80E-01	2.70E-02	Te-131M	5.60E-01	2.80E-02
Kr-85	3.40E+00	5.50E+01	Te-131	2.20E-32	1.60E-32
Kr-87	8.00E-09	1.40E-09	Te-132	7.10E+00	6.20E-02
Kr-88	8.60E-03	9.90E-04	I-132	7.40E-05	2.30E-05
Xe-131M	3.30E+01	6.80E+01	I-133	4.70E+01	1.90E+00
Xe-133M	5.70E+00	4.20E+00	I-134	2.50E-14	1.90E-14
Xe-133	3.80E+03	2.10E+02	Cs-134	5.30E+01	1.90E+00
Xe-135M	0.00E+00	0.00E+00	I-135	1.30E+00	1.70E-01
Xe-135	2.60E+01	4.30E+00	Cs-136	6.10E+00	1.20E-01
Xe-137	0.00E+00	0.00E+00	Cs-137	8.10E+01	2.70E+00
Xe-138	0.00E+00	0.00E+00	Ba-140	2.10E-01	6.50E-01
Br-84	2.40E-25	1.90E-25	La-140	2.90E-02	6.50E-01
Rb-88	0.00E+00	0.00E+00	Ce-141	1.10E-02	1.00E-02

¹⁾ 사용후연료저장조 냉각 및 정화계통 이온교환기의 제염계수 불활성기체(1) I, Br(10), Cs, Rb(2), 기타핵종(10)

표 3.3-2 사용후연료저장조 및 재장전수조내 설계기준 및 예상 비방사능(계속)

핵 종	설계기준	예 상	핵 종	설계기준	예상
Sr-89	2.80E-01	1.20E-02	Ce-143	9.50E-03	6.20E-02
Sr-90	2.90E-02	2.90E-03	Ce-144	6.40E-02	7.20E-01
Sr-91	1.30E-02	2.50E-03	Na-24	0.00E+00	3.60E-01
Y-91M	2.50E-16	4.50E-17	Cr-51	5.80E-01	1.60E-01
Y-91	3.30E+00	3.60E-02	Mn-54	1.10E-01	1.10E-01
Y-93	2.80E-03	1.00E-01	Fe-55	0.00E+00	8.00E-02
Zr-95	6.60E-02	3.70E-02	Fe-59	1.60E-02	1.60E-02
Nb-95	3.50E-02	1.90E-02	Co-58	4.00E-01	2.50E-01
Tc-99M	5.30E-02	1.90E-03	Co-60	3.50E-02	3.50E-02
Mo-99	9.90E+00	2.20E-01	Ba-137M	8.10E+01	2.70E+00
Ru-103	1.30E-02	5.50E-01	Zn-65	0.00E+00	8.90E-02
Ru-106	1.20E-02	1.70E+01	W-187	0.00E+00	4.00E-02
Ag-110	0.00E+00	2.20E-01	Np-239	0.00E+00	6.90E-02
Te-129M	4.00E-01	1.20E-02	Sb-122	2.70E-02	2.70E-02
Te-129	9.80E-13	4.10E-12	Sb-124	3.50E-01	3.40E-01

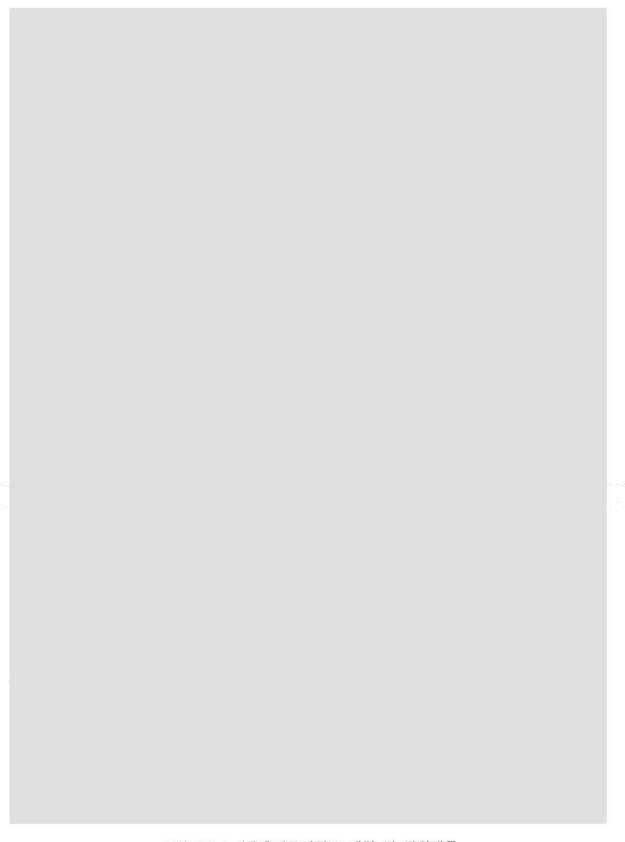


그림 3.3-1 사용후연료저장조 냉각 및 정화계통

본 계통의 탈염기는 이온성 부식생성물 및 핵분열생성물을 제거시켜주고 여과기는 탈염기입구에 설치되어 이 물질 입자들을 제거하며 후단여과기는 탈염기로부터 빠져나오는 미세수지 입자들을 제거한다. 그리고 동 계통으로부터 주기적으로 시료를 채취하여 수질을 검사한다. 탈염기의 폐수지(Spent Resin)는 폐기물처리계통의 폐수지 저장탱크(Spent Resin Storage Tank)로 보내 폐기, 처리한다.

또한 동 계통은 저장조의 정화뿐만 아니라 원전연료재장전수조 및 재장전수 탱크를 정화시킬 수 있는 능력도 갖고 있다. 또한 사용후연료 저장조 및 원전연료 재장전수조 수면에는 스키머(Skimmer)회로가 설치되어 있어 떠 있는 부유성 찌꺼기를 제거한다.

나. 계통운전

1) 정상운전

가) 사용후연료 저장조 냉각계통

사용후연료 저장조 냉각계통의 정상운전은 수동으로 필요시 실시된다. 이 계통은 저장조의 수온을 60° C(140°F) 이하로 유지하도록 작동되며 정상운전 시에는 하나의 냉각회로만 작동한다.

원전연료재장전 작업기간 중 사용후연료 저장조 냉각계통은 사용후연료 저장조에 옮겨진 사용후연료에 의해 생성되는 붕괴열을 제거하는데 사용된다. 붕산수는 재장전수 탱크로부터 붕산수 보충펌프를 통해 공급되어 붕소가 추가되며 이는 운전원의 수동조작에 의해 이루어 진다.

정상 시 증발 등으로 인한 저장조 냉각수 보충은 탈염수 이송 및 저장계통으로부터 이루 어진다.

비상시에는 내진 범주 I 에 따라 설계된 응축수 저장탱크로부터 보충수를 공급받으며 이들 배관에는 수동작동밸브가 설치되어 있다.

사용후연료 저장조의 수위는 주제어실에 지시된다.

나) 사용후연료 저장조 정화계통

사용후연료 저장조 정화계통은 필요할 경우 수동으로 운전된다.

동 계통은 사용후연료 저장조 및 원전연료 재장전수조의 이온화 부식생성물 및 핵분열생성물을 제거하며 저장조 물의 투명도를 유지시켜 준다.

각 저장조의 냉각수는 사용후연료 저장조 정화펌프로 흡입되고 필터, 이온교환기, 후단여 과기 등을 거쳐 정화된 후 다시 각 저장조로 되돌아온다.

원전연료 재장전 기간 중에는 동 계통은 원전연료 재장전수조의 물을 흡입하여 필터 및 탈염기를 거쳐 정화시킨 후 다시 원전연료 재장전수조로 보낸다.

사용후연료 집합체를 사용후연료 저장조로 옮기고 난 후, 원전연료 재장전수조에 연결된

정화회로는 수동조작에 의해 차단되며 사용후연료 저장조의 정화가 시작된다. 이러한 운전 전환은 원전연료재장전 작업도중에도 할 수 있으며 사용후연료 저장조 및 원전연료 재장전 수조의 수질조건에 따라 수동으로 할 수 있다.

또한 원전연료 재장전작업이 완료되어 원전연료 재장전수조의 물을 재장전수 탱크로 배수하고 난 후 필요에 따라 사용후연료 저장조 정화회로를 재장전수 탱크로 연결하여 재장전수를 정화시킨다.

사용후연료집합체는 재장전을 위해 원자로를 정지한 후 격납건물내에 있는 지배적인 방사선원이다. 사용후연료집합체의 방사선원을 계산하기 위해, 원자로가 운전주기 동안 최대출력으로 일정하게 운전되는 것을 가정하였다. 전형적인 사용후연료의 붕괴 감마선원이 표 3.2-3에 주어져 있다.

표 3.3-3 사용후연료 감마선원(MeV/Watt-sec)

평균 에너지(MeV)	50 시간	100 시간	200 시간	500 시간	1000 시간
1.50E-02	2.90E+08	1.86E+08	9.77E+07	4.86E+07	3.60E+07
2.50E-02	6.36E+07	4.88E+07	3.47E+07	2.15E+07	1.52E+07
3.75E-02	1.14E+08	8.62E+07	6.03E+07	3.50E+07	2.33E+07
5.75E-02	1.12E+08	8.38E+07	5.90E+07	3.68E+07	2.71E+07
8.50E-02	3.32E+08	2.21E+08	1.16E+08	4.60E+07	2.86E+07
1.25E-01	1.17E+09	7.20E+08	3.32E+08	1.34E+08	9.05E+07
2.25E-01	1.51E+09	8.79E+08	3.60E+08	1.00E+08	6.48E+07
3.75E-01	7.98E+08	6.08E+08	4.10E+08	1.89E+08	8.41E+07
5.75E-01	3.48E+09	2.67E+09	2.02E+09	1.36E+09	9.65E+08
8.50E-01	5.04E+09	4.28E+09	3.60E+09	2.85E+09	2.31E+09
1.25E+00	8.53E+08	5.97E+08	3.81E+08	1.88E+08	1.10E+08
1.75E+00	2.79E+09	2.53E+09	2.04E+09	1.05E+09	3.47E+08
2.25E+00	2.14E+08	1.84E+08	1.44E+08	8.42E+07	4.42E+07
2.75E+00	1.62E+08	1.48E+08	1.19E+08	6.10E+07	2.00E+07··
3.50E+00	1.75E+06	1.60E+06	1.31E+06	7.03E+05	2.71E+05
5.00E+00	3.53E+01	8.91E+00	8.84E+00	8.65E+00	8.35E+00
7.00E+00	1.44E+00	1.44E+00	1.43E+00	1.39E+00	1.35E+00
1.10E+01	2.61E-01	2.60E-01	2.58E-01	2.52E-01	2.43E-01

2) 비정상운전

- 가) 사용후연료 저장조 냉각계통
- (1) 핵연료 재장전 운전 직후에 원자로의 전노심을 사용후연료 저장조로 인출해야 할 필요가 있는 비정상적인 경우, 2개의 냉각 계열을 모두 사용해서 전 인출 노심 및 이전의 재장전 운전에서 배출되어 누적 저장된 핵연료에서 방출되는 붕괴열을 제거하여 저장조 수온을 140°F(60°C) 이하로 유지하여야 한다.
- (2) LOCA사고를 제외하고는 정상 전원이 상실되었을 경우에는 사용후연료 저장조 정화계통은 수동조작으로 운전 정지시킨다.

다. 기기 설계

사용후연료 저장조 냉각 및 정화계통을 구성하고 있는 기기에 대한 설계내용은 다음과 같다.

1) 사용후연료저장조 냉각펌프

사용후연료 저장조 냉각펌프는 2대이며 각각 100%의 용량을 갖고 있는 수평, 원심형 펌프로서 냉각수와 접하는 면은 모두 오스테나이트계 스텐레스강으로 제작되어 있다. 각 펌프는 저장조의 각기 다른 부분에서 냉각수를 흡입한다.

2) 사용후언료저장조 정화펌프

사용후연료 저장조 정화펌프는 수평, 원심형 펌프로서 사용후연료 저장조 및 원전연료 재 장전조로부터 냉각수를 흡입하여 여과기, 탈염기 및 후단여과기 등을 통하여 순환시켜 냉각 수로부터 탱크내의 물을 흡입하여 정화회로로 보내주는 역할도 한다.

3) 사용후연료저장조 냉각열교환기

사용후연료 저장조 냉각 열 교환기는 쉘 - U 튜브형 열 교환기로서 저장조의 물은 튜브 측으로 흐르며 1차측 기기 냉각수는 쉘측으로 흐른다. 열 교환기는 2대이며 각각 100%의 용량을 갖도록 설계되었다.

4) 사용후연료저장조 정화탈염기

사용후연료 저장조 정화탈염기는 혼합상 탈염기(Mixed Bed Demineralizer)이며 원전연료 저장구역에서 작업하는 운전원에게 해를 미치지 않을 정도의 방사선량을 유지하기 위하여 사용후연료 저장조 냉각수의 순도를 적합한 상태로 유지시켜 주는 역할을 한다.

3.3.3 원전연료건물 HVAC계통

원전연료건물 HVAC계통은 정상 또는 원전연료 취급사고 시 원전연료건물 내에 있는 운전원과 기기들에 대해 적합한 환경을 만들어 주며 오염된 공기가 대기 중으로 유출되지 않도록 제어하는 역할을 한다. 특히 원전연료 취급사고 시에는 비상배기계통(Emergency Exhaust System)으로 부유방사능 물질을 제거한다.

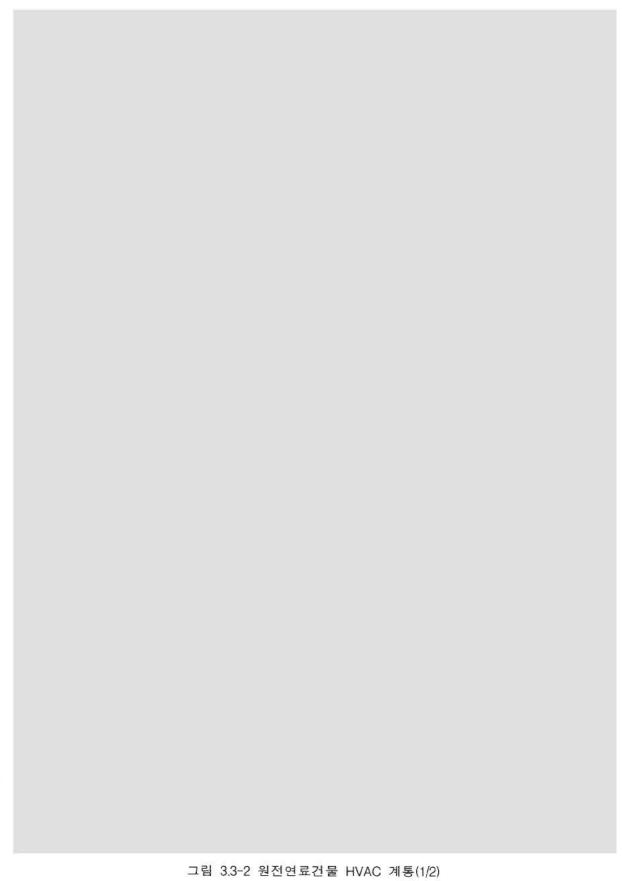
본 계통에 대한 계통도는 그림 3.3-2와 같으며, 계통 기기 변수 값을 표 3.3-2에 주어진다.

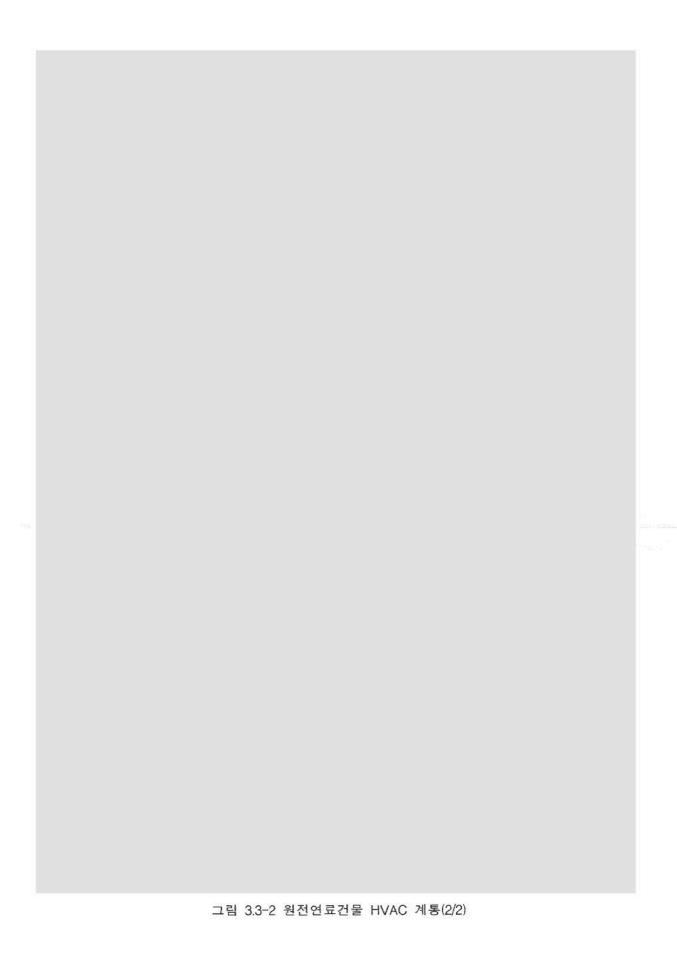
가. 계통설명

핵연료건물 공기조화계통은 정상 급기계통, 정상 배기계통, 비상 배기계통 및 지역냉방기기로 구성되어 있다.

핵연료건물 정상 급기계통은 전단 여과기, 온수 가열 코일, 냉수 냉각 코일 및 2대의 100% 용량 급기송풍기로 구성된 급기 공기조화기와 외기 흡입구, 공기구동식 격리댐퍼, 관련 덕트 및 덕트 부속물, 그리고 계측제어 기기들로 이루어져 있다.

핵연료건물 정상 배기계통은 전단 여과기, 고효율입자여과기 및 2대의 100% 용량 배기 송풍기로 구성된 정상 배기 공기정화기와 공기구동식 풍량 제어 댐퍼, 공기구동식 격리댐퍼, 배기구, 관련 덕트 및 덕트 부속물, 그리고 계측제어 기기들로 이루어져 있다.


사용후연료저장조 지역 및 건물의 다른 지역으로부터의 배기는 정상 배기계통의 정상 배기 공기정화기를 통해 지속적으로 이루어진다. 사용후연료저장조 주위에 설치된 방사선감시기에 의해 요오드 그리고/또는 입자성 부유 방사능 물질의 농축 가능성이 감지되면 배기는 비상 배기 공기정화기를 통과하도록 유로가 변경된다.


비상배기계통은 습분분리기, 전기 가열코일, 전단 여과기, 전단 고효율입자여과기, 공간 전기 가열코일, 활성탄 흡착기, 후단 고효율입자여과기, 배기 송풍기로 각각 구성된 2대의 100% 용량 비상 배기 공기정화기, 각 배기 공기정화기 입구의 격리 댐퍼 및 출구의 풍량제어 댐퍼, 배기구, 관련 덕트 및 덕트 부속물 그리고 계측제어 기기로 이뤄져 있다.

나. 계통운전

1) 정상운전

발전소 정상운전 시 건물 밖의 외기를 흡입하여 적절히 정화 및 냉각/가열시켜 원전연료 건물 환기를 한다.

냉각코일은 냉방용수계통으로부터 냉각수를 공급받아 공기를 냉각시킨다. 건물내의 공기는 배기송풍기를 통해 대기로 배출시킨다. 배기 유량은 흡입유량보다 약간 크게 하여 원전연료건물 내에 약간의 부압(설계압력: 약 1/8 inch H₂O)이 유지되도록 한다.

2) 비상운전

원전연료 취급사고 시 원전연료건물은 고방사능 신호에 의해 덕트에 있는 격리댐퍼가 닫혀 격리되고 이와 동시에 비상배기청정유닛을 작동시켜 원정연료건물내의 공기를 여과시킨후 대기로 배출한다. 비상배기청정유닛이 작동될 때는 정상공기공급계통이 작동 중지되므로 원전연료건물 내의 공기공급은 공기누입(Air Infiltration)에 의해 이루어진다.

원전연료저장조 펌프실 및 열교환기실냉각유닛은 펌프실과 열교환기실의 공기를 냉각시킨다. 각 냉각유닛은 원전연료건물 비상 배기 작동신호에 의해 자동으로 작동되며 이 때 공기는 모두 재 순환된다.

표 3.3-4 원전연료건물 HVAC 계통 기기설계값

기 기 명	수량, 형식, 용량
가. 핵연료건물 정상 급기공기조화기	
형 식	흡인형
대 수	1 대
1. 송풍기	
형 식	원심형
대 수	100% 용량 2 대
구동방식	벨트형
풍 량, cfm(CMH)	24,000 (40,776)
전 압, in.H2O(mmH20)	8.9 (223.5)
2. 가열코일	
형 식	온수형
대 수	1 뱅크
용 량, Btu/hr(kcal/hr)	1,941,200 (489,182)
풍 량, cfm(CMH)	24,000 (40,776)
3. 냉각코일	
형식	냉수형
대 수	1 뱅크
용 량, Btu/hr(kcal/hr)	290,000 (73,080)
풍 량, cfm(CMH)	24,000 (40,776)

표 3.3-3 원전연료건물 HVAC 계통 기기설계값(계속)

기 기 명	수량, 형식, 용량
4. 전단 여과기	1 0, 0 1, 0 0
4. 전한 역사기 형 식	건식, 교체형
	1 뱅크
,	I "
풍 량, cfm(CMH)	24,000 (40,776)
압력 강하, 초 기,in.H2O(mmH20)	0.55 (14)
교체시, in.H2O(mmH20)	1.2 (30.5)
효율 (%, ASHRAE 52-76 시험기준)	80-85
여과재	유리 섬유
나. 핵연료건물 정상 배기공기정화기	
형식	흡인형
대 수	1 대
1. 전단 여과기	고시 그 케처
형식	건식, 교체형
수 량	1 明크
풍 량, cfm(CMH)	27,300 (46,383)
압력 강하, 초 기, in.H2O(mmH20)	0.68 (17.3)
교체시, in.H2O(mmH20)	1.2 (30.5)
효율 (%, ASHRAE 52-76 시험기준)	최소 85
여과재	유리 섬유
2. 고효율입자여과기	
형식	원자력 등급
	1 83
풍 량, cfm(CMH)	27,300 (46,383)
압력 강하, 초 기, in.H2O(mmH20)	1.0 (25.4)
교체시, in.H2O(mmH20)	2.0 (50.8)
효율 (%, ASHRAE 52-76 시험기준)	최소 99.97
여과재	방수 및 방화형 유리 섬유
3. 송 풍 기	
형 식	원심형
대 수	100% 용량 2 대
구동방식	벨트형
풍 량, cfm(CMH)	27,300 (46,383)
전 압, in.H2O(mmH20)	11.8 (299.7)
다. 핵연료건물 비상 배기공기정화기	
형 식	흡인형
대수	100% 용량 2 대
1. 습분 분리기	
5. 명단 단어가 형 식	충돌형
대 수	1 뱅크

표 3.3-3 원전연료건물 HVAC 계통 기기설계값(계속)

기 기 명	수량, 형식, 용량
풍 량, cfm(CMH)	5,000 (8,495)
압력 강하, in.H2O(mmH20)	1.0 (25.4)
효율 (%, ASME N509 기준)	99
2. 전기 가열코일	
형 식	핀튜브형
대 수	1 뱅크
용 량, kW	25
풍 량, cfm(CMH)	5,000 (8,495)
3. 전단 여과기	
형 식	건식, 교체형
수 량	1 뱅크
풍 량, cfm(CMH)	5,000 (8,495)
압력 강하, 초 기, in.H2O(mmH20)	0.5 (12.7)
교체시, in.H2O(mmH20)	1.2 (30.5)
효율 (%, ASHRAE 52-76 시험기준)	최소 90
여과재	유리 섬유
4. 전단 고효율입자여과기	
형식	원자력 등급
수 광	1 뱅크
풍 량, cfm(CMH)	5,000 (8,495)
압력 강하, 초 기, in.H2O(mmH20)	0.95 (24.1)
교체시, in.H2O(mmH20)	2.5 (63.5)
효율 (%, 최소 입자경 0.3 m 이상) 여과재	최소 99.97
역관세 5. 공간 전기 가열코일	방수 및 방화형 유리 섬유
형 식	핀튜브형
대 수	1 明크
용 량, kW	3
6. 활성탄 흡착기	
형 식	 III 형
대 수	1 뱅크
풍 량, cfm(CMH)	5,000 (8,495)
압력 강하, in.H2O(mmH20)	1.7 (43.2)
흡 착 재	활성탄
Depth	4"
여과효율 / 옥소 흡착효율	90 %
7. 후단 고효율입자여과기	
형 식	원자력 등급
수 량	1 뱅크
풍 량, cfm(CMH)	5,000 (8,495)
압력 강하, 초 기,in.H2O(mmH20)	0.95 (24.2)
교체시,in.H2O(mmH20)	2.5 (63.5)
효율 (%, 최소 입자경 0.3 m 이상)	최소 99.97
여 과 재	방수 및 방화형 유리 섬유

표 3.3-3 원전연료건물 HVAC 계통 기기설계값(계속)

기 기 명	수량, 형식, 용량
8. 송풍기	
형식	원심형
대수	1 대
구동방식	직결형
풍 량, cfm (CMH)	5,000 (8,495)
전 압, in.H2O(mmH20)	13.5 (342.9)
라. 사용후연료저장조 냉각펌프실 지역냉방기	
형식	흡인형
대 수	100% 용량 2 대(각 실당 1 개)
1. 냉각코일	
형 식	냉수형
대 수	1 뱅크
풍 량, cfm(CMH)	2,470 (4,197)
냉각용량, Btu/hr(kcal/hr)	80,000 (20,160)
2. 송풍기	
형식	원심형
대 수	1 印
구동방식	직결형
풍 량, cfm(CMH)	2,470 (4,197)
전 압, in.H2O(mmH20)	1.25 (31.8)

3.4 방사성폐기물처리계통

3.4 방사성폐기물처리계통

3.4.1 기체방사성폐기물처리계통

방사성기체는 발생되는 곳에 따라 다음과 같은 계통들에서 수집, 처리된다.

- 기체방사성폐기물계통 (Gaseous Radwaste System)
- 주복수기진공계통 (Main Condenser Evacuation System)
- 터빈그랜드밀봉계통 (Turbine Gland Seal System)
- 건물환기계통 (Building Ventilation System)

주복수기진공계통, 터빈그랜드밀봉계통, 건물환기계통에 수집되는 폐기체들은 저준위방사성기체로서 해당건물의 공기조화계통에서 여과, 처리된 후 건물환기계통의 배기구를 통해대기로 방출된다. 기체 방사성폐기물 계통은 영광 5,6호기 공용으로 방사성폐기물 건물 내에설치되며 탈기체 처리기기로부터 배기 되는 고준위방사성기체를 수집하여 일정기간 지연, 붕괴시킨 뒤 주변 대기로 방출함으로써 종사자는 물론 인근주민의 방사선 피폭을 최소한으로 줄이기 위한 설비이다. 기체방사성폐기물처리계통은 연속적인 운전이 이루어지는 계통으로서 관련 설비들은 계속 사용된다. 단, 기체방사성폐기물계통 냉각기는 발전소 냉각계통 (Plant Chilled Water System)으로부터 냉각수를 공급받지 못하는 경우(예, 발전소 냉각계통 기저부하 이하가 되는 동절기)에 사용되도록 설계되어 있다.

본 절에서는 주로 고준위방사성기체를 처리하는 기체방사성폐기물 계통에 대하여 기술한다.

가. 폐기물처리계통

1) 계통설명

기체방사성폐기물 계통은 관통형 상은 활성탄 지연계통으로 활성탄의 높은 다공성을 이용하여 방사성요오드와 불활성 기체를 흡착, 지연, 붕괴시켜 처리한다. 본 계통은 한 대의 모판배수탱크와 다중성을 갖도록 설치된 2개의 제습계열(Moisture Removal Trains), 각각 1대의 전처리여과기(Pre-filter), 폐기체 건조기와 활성탄 보호대(Charcoal Delay Beds), HEPA여과기로 이루어진 처리설비와 계통 내 여러 지점에서 채취된 시료의 수소/산소 농도를 분석하는 H_2/O_2 분석기, 습분감지기(Monitor Sensors) 및 방사성 폐기물건물 HVAC 방출모판배기구에 있는 방사능감시기 등의 계측설비로 이루어진다. 본 계통으로 유입되는 기체는 주로 수소와 질소이며, 다음과 같은 입력 원에서 발생하는 방사성기체가 수집모관을 통해 본계통으로 유입된다.

- 원자로냉각재 배수탱크
- 화학 및 체적제어 계통의 탈기기

- 화학 및 체적제어 계통의 체적제어 탱크

이상과 같은 입력 원에 포함된 방사성기체는 주로 핵분열 시 생성된 핵분열기체로서 원전 연료봉 내에 갇혀 있다가 원전연료봉 피복재의 손상부위를 통하여 누설된 것으로 본 계통으로 유입되어 활성탄지연 계통을 통과하는 동안 활성탄에 흡착 또한 지연되어 방사붕괴 함에 따라 그 방사능량이 감소된다.

2) 계통구성

가) 계통도

기체방사성폐기물계통 흐름도(Flow Diagram)는 그림 3.4-1과 같다.

나) 주요 구성 기기

기체방사성폐기물계통을 구성하고 있는 주요 기기 사양은 표 3.4-1과 같다.

다) 독립설비 및 공용설비

기체방사성폐기물처리계통은 영광 5,6호기 공용설비로서, 부지 내 다른 호기의 원자로 등과 공용으로 사용하지 않는다.

설계압력/온도 7] 7] 수 랑 유량/용량 자 질 1 모관배수 탱크 8.5m3 스테레스강 10.5kg/cm/93℃ 처리기체 제어기 1 37,380 ℓ/hr 스텐레스강 10.5kg/cm²/93℃

표 3.4-1 기체방사성폐기물처리계통 기기 사양

자료 : 영광원자력 5,6호기 최종안전성분석보고서.

나. 방사성물질의 처리

1) 계통운전

정상운전에 앞서, 질소가스를 이용하여 본 계통을 비롯한 모든 입력원, 즉 원자로 배수탱크, CVCS 탈기기 및 체적제어 탱크내의 산소농도가 설계치 이내로 유지되도록 퍼지 시킨다. H₂/O₂분석기에서 고 산소 경보(2%)가 방사성폐기물 제어실에 발생하면 운전원은 산소입력 원을 차단하고 질소를 이용하여 산소농도를 희석시킨다. 고-고 산소 경보(4%)는 주제어실 및 방사성폐기물 제어실에 발생하며, 질소가 자동으로 계통 내로 주입되어 계통 내 산소의 농도로 희석시킨다. 또한 계통 내에는 압력측정기가 있어 계통 내의 압력이 떨어지면자동적으로 경보를 발생하여 운전원이 계통의 손상과 손상부위를 통한 산소의 유입을 감지

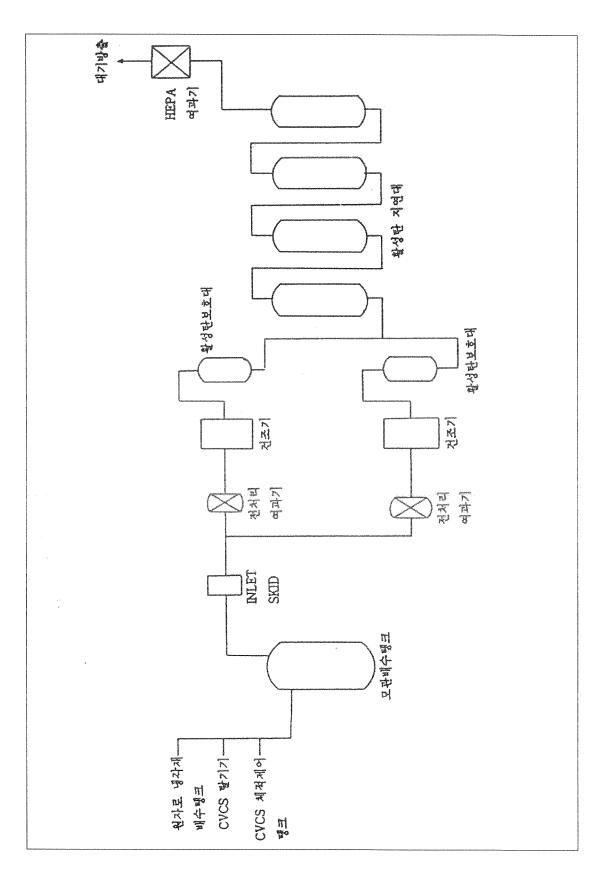


그림 3.4-1 기체방사성폐기물처리계통 흐름도

할 수 있으므로 적절한 조치를 취하게 된다. 이와 같이 H_2/O_2 분석기와 압력측정기를 이용하여 수소의 계통 내 폭발을 방지할 수 있으므로, 본 계통의 기기설계 시 내부폭발은 고려하지 않는다.

여러 입력 원에서 발생하는 방사성 기체는 기체 수집모관을 통해 본 계통으로 유입되는데 이 모관의 압력은 0.035~0.35 kg/c㎡로 유지된다.

수집모관 내에 생긴 응축수는 모관배수탱크에 수집된 뒤 액체 방사성폐기물 계통으로 보내 처리한다.

모판배수탱크를 거친 고온의 방사성 기체는 제습계열로 유입되는데 제습계열의 첫 단계인 전처리여과기에서 대부분의 입자성 물질이 제거된다. 입자성 물질이 제거된 방사성기체는 폐기체건조기로 유입되며, 여기서 폐기체의 이슬점 온도를 $5.6\%\sim11.1\%$ 로 낮춤으로서 폐기체 속에 함유된 대부분의 습분을 제거한다. 대부분의 습기가 제거된 기체는 재 가열되어 상대습도를 낮춘 뒤 활성탄보호대로 유입되는데 보호대를 이용하여 기체 속에 남아있는 잔여습분을 제거하여 활성탄지연대의 효율을 증대시킨다. 또한 단 수명 방사성핵종과 방사성옥소는 보호대에서 대부분 흡착되어 보호대에서 방사성 붕괴하게 된다. 활성탄이 습기를 흡수했을 때 온도가 크게 오르는 현상을 이용한 온도 감지기를 활성탄보호대와 활성탄지연대내에 설치하여 습기의 존재를 확인할 수 있으며, 탱크 하부에 설치된 여과용 스크린은 활성탄이 빠져나가는 것을 방지한다.

활성탄지연대에서 처리된 기체는 HEPA여과기로 유입되어 활성탄 분진과 입자성 방사성 물질을 제거한 뒤 건물의 배기계통을 통해 대기로 방출된다. 그러나 폐기물건물 배기계통에 부착된 방사능 감시기에서 고방사능 경보가 발생하면 자동으로 본 계통에서의 배기는 중지 된다. 본 계통은 입력배관에 고압이 걸리거나 보호대에 습분함량이 많은 경우에는 운전정지 가 되도록 설계되어있다.

과도 운전시 본 계통으로 유입되는 방사성기체의 양은 설계유량을 초과하게 된다. 이럴경우 본 계통은 증가된 유량으로 운전하게 되어 방사성 기체의 지연시간이 줄게 되나 이로인해 대기로 방출되는 방사능량의 증가는 무시할 수 있을 만큼 작다.

2) 방사성물질의 방출

본 절에서는 정상운전시 발전소 한 호기에서 방출되는 기체방사능의 예상 방출량을 기술한다. 가) 방출지점

기체 방사성물질은 기체 방사성폐기물 계통과 보조건물, 터빈건물, 격납건물, 원전연료건물, 폐기물건물 배기계통을 통해 직접 환경으로 방출된다. 기체 방사성폐기물 계통의 방출은 방사성폐기물 건물의 배기구를 통해 이루어지므로 기체 방사성물질의 방출지점은 각 건물의 배기구이다. 한편, 기체방사성폐기물계통으로 유입되는 기체의 주요 발생원별 연간 발생량

및 유량은 표 3.4-2에 나타나 있다.

나) 예상 방출량

정상운전 시, 운전정지 시 및 1차측냉각재의 탈기 시 기체방사성폐기물계통 및 각 건물배기계통을 통해 배기되는 방사성 기체의 예상방출랑은 PWR-GALE (Rev.1) 전산코드로수행하며, 계산된 각 건물의 환기계통으로 방출되는 예상방출량, 기체폐기물계통으로부터 방출되는 예상방출량 및 연간 예상 기체폐기물방출량은 표 3.4-3~5와 같다.

한편, 영광부지에 영광 5,6호기가 가동하게 되면 총 6기가 가동하게 되며 다수 호기 가동으로 인한 주변 환경에서의 방사성 핵종별 방사능농도와 주변 주민이 받는 연간 피폭선량을 평가하는데 사용되는 기체폐기물의 연간 총 방출량은 마찬가지로 표 3.4-5에 주어진다. 표에서 현재 상업운전 중에 있는 영광 1,2호기 및 3,4호기의 가동으로 인한 기체폐기물의 연간 방출량은 1998년도 원자력발전소 방사선관리 연보에 제시된 1995년부터 1998년까지의 실제 방출량 자료 중 방사성 핵종별로 최대 방출량을 보이는 연도의 방출량을 사용하였으며, 현재 건설중인 영광 5,6호기의 연간 예상 방출량은 영광 5,6호기 FSAR에 제시된 값을 인용하였다.

표 3.4-2 기체방사성폐기물처리계통으로 유입되는 기체의 주요 발생원별 연간 발생량

발 생 원	발생기체	연간 발생량 (m³)	최대유량 ¹⁾ (ℓ /min)	평균유량 (l/min)
화학 및 체적제어 계통의 체적제어 탱크	$egin{array}{c} H_2 \ N_2 \ O_2 \end{array}$	70.75 17.26 1.83	623	0.17 0.06 4.53E-3
화학 및 체적제어 계통의 탈기기 ²⁾	H ₂ N ₂ O ₂	4,018.6 83.49 1.13	566	9.57 0.2 2.69E-3
원자로냉각재 배수탱크	H ₂ N ₂ O ₂	0 219.58 0	623	0 0.57 0

주1) 최대유량은 추정된 예상 최대값이며, 지속적인 운전 수치는 아님.

주2) 탈기기로부터의 수치는 지속적인 탈기 운전을 가정한 값으로부터 산출된 것임.

표 3.4-3 각 건물 환기계통으로 방출되는 예상 방출량(1개호기 기준) (단위 : TBq/yr)

핵 종	격납건물	보조건물	터빈건물	원전연료건물
Kr-85m	1.89E+00	1.48E-01	0.00E+00	0.00E+00
Kr-85	4.07E+01	4.81E-01	0.00E+00	0.00E+00
Kr-87	5.92E-01	1.11E-01	0.00E+00	0.00E+00
Kr-88	2.22E+00	2.22E-01	0.00E+00	0.00E+00
Xe-131m	4.18E+01	6.66E-01	0.00E+00	0.00E+00
Xe-133m	3.44E+00	7.40E-02	0.00E+00	0.00E+00
Xe-133	1.55E+02	2.22E+00	0.00E+00	0.00E+00
Xe-135m	1.11E-01	1.11E-01	0.00E+00	0.00E+00
Xe-135	1.74E+01	7.03E-01	0.00E+00	0.00E+00
Xe-137	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Xe-138	7.40E-02	1.11E-01	0.00E+00	0.00E+00
I-131	4.44E-04	2.41E-03	0.00E+00	0.00E+00
I-132	2.48E-03	1.37E-02	4.81E-06	0.00E+00
I-133	1.48E-03	8.14E-03	3.70E-06	0.00E+00
I-134	4.07E-03	2.26E-02	5.18E-06	0.00E+00
I-135	2.92E-03	1.59E-02	7.03E-06	0.00E+00
Cr-51	6.29E-06	1.18E-07	0.00E+00	6.66E-08
Mn-54	3.63E-06	2.89E-08	0.00E+00	1.11E-07
Co-57	5.55E-07	0.00E+00	0.00E+00	0.00E+00
Co-58	1.70E-05	7.03E-07	0.00E+00	7.77E-06
Co-60	1.78E-06	1.89E-07	0.00E+00	3.03E-06
Fe-59	1.85E-06	1.85E-08	0.00E+00	0.00E+00
Sr-89	8.88E-06	2.78E-07	0.00E+00	7.77E-07
Sr-90	3.59E-06	1.07E-07	0.00E+00	2.96E-07
Zr-95	0.00E+00	3.70E-07	0.00E+00	1.33E-09
Nb-95	1.22E-06	1.11E-08	0.00E+00	8.88E-07
Ru-103	1.11E-06	8.51E-09	0.00E+00	1.41E-08
Ru-106	0.00E+00	2.22E-09	0.00E+00	2.55E-08
Sb-125	0.00E+00	1.44E-09	0.00E+00	2.11E-08
Cs-134	1.70E-06	2.00E-07	0.00E+00	6.29E-07
Cs-136	2.18E-06	1.78E-08	0.00E+00	0.00E+00
Cs-137	3.70E-06	2.66E-07	0.00E+00	9.99E-07
Ba-140	0.00E+00	1.48E-07	0.00E+00	0.00E+00
Ce-141	8.88E-07	9.62E-09	0.00E+00	1.63E-10

표 3.4-4 기체폐기물처리계통으로 방출되는 예상방출량

(단위: IBOV	(단우	:	TBa,	٧r)
-----------	---	----	---	------	----	---

핵 종	탈 기		건물배기			증기발생기	복수기	
्रा ५	핵연료재장전	정상운전	격납건물	보조건물	터빈건물	취출계통 배기	진공펌프	계
Kr-85m	0.00E+00	0.00E+00	1.89E+00	1.48E-01	0.00E+00	0.00E+00	7.40E-02	2.11E+00
Kr-85	8.88E+00	2.70E+01	4.07E+01	4.81E-01	0.00E+00	0.00E+00	2.22E-01	7.77E+01
Kr-87	0.00E+00	0.00E+00	5.92E-01	1.11E-01	0.00E+00	0.00E+00	7.40E-02	7.77E-01
Kr-88	0.00E+00	0.00E+00	2.22E+00	2.22E-01	0.00E+00	0.00E+00	1.11E-01	2.55E+00
Xe-131m	1.48E-01	4.07E-01	4.81E+01	6.66E-01	0.00E+00	0.00E+00	2.96E-01	4.81E+01
Xe-133m	0.00E+00	0.00E+00	3.44E+00	7.40E-02	0.00E+00	0.00E+00	0.00E+00	3.52E+00
Xe-133	0.00E+00	0.00E+00	1.55E+02	2.22E+00	0.00E+00	0.00E+00	1.04E+00	1.59E+02
Xe-135m	0.00E+00	0.00E+00	1.11E-01	1.11E-01	0.00E+00	0.00E+00	3.70E-02	2.59E-01
Xe-135	0.00E+00	0.00E+00	1.74E+01	7.03E-01	0.00E+00	0.00E+00	3.33E-01	1.85E+01
Xe-137	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Xe-138	0.00E+00	0.00E+00	7.40E-02	1.11E-01	0.00E+00	0.00E+00	3.70E-02	2.22E-01
전체	불활성							3.15E+02
I-131	0.00E+00	1.81E-04	4.44E-04	2.41E-03	0.00E+00	0.00E+00	0.00E+00	3.03E-03
I-132	0.00E+00	9.99E-04	2.48E-03	1.37E-02	4.81E-06	0.00E+00	0.00E+00	1.70E-02
I-133	0.00E+00	5.92E-04	1.48E-03	8.14E-03	3.70E-06	0.00E+00	0.00E+00	1.04E-02
I-134	0.00E+00	1.70E-03	4.07E-03	2.26E-02	5.18E-06	0.00E+00	0.00E+00	2.85E-02
I-135	0.00E+00	1.18E-03	2.92E-03	1.59E-02	7.03E-06	0.00E+00	0.00E+00	2.00E-02
전체	전체 요오드							7.77E-02

삼중수소방출량 = 9.25 TBq/yr

C-14 방출량 = 0.19 TBq/yr

Ar-41 방출량(격납건물 배기) = 1.26 TBq/yr

표 3.4-4 기체페기물처리계통으로 방출되는 예상방출량(계속) (단위 : TBq/yr)

+1) Z	기체방사성		건 물 배 기			
핵 종	폐기물계통	격납건물	보조건물	핵연료건물	계	
Cr-51	5.18E-09	6.29E-06	1.18E-07	6.66E-08	6.66E-06	
Mn-54	7.77E-10	3.63E-06	2.89E-08	1.11E-07	3.70E-06	
Co-57	0.00E+00	5.55E-07	0.00E+00	0.00E+00	5.55E-07	
Co-58	3.22E-09	1.70E-05	7.03E-07	7.77E-06	2.55E-05	
Co-60	5.18E-09	1.78E-06	1.89E-07	3.03E-06	5.18E-06	
Fe-59	6.66E-10	1.85E-06	1.85E-08	0.00E+00	1.89E-06	
Sr-89	1.63E-08	8.88E-06	2.78E-07	7.77E-07	9.99E-06	
Sr-90	6.29E-09	3.59E-06	1.07E-07	2.96E-07	4.07E-06	
Zr-95	1.78E-09	0.00E+00	3.70E-07	1.33E-09	3.70E-07	
Nb-95	1.37E-09	1.22E-06	1.11E-08	8.88E-07	2.11E-06	
Ru-103	1.18E-09	1.11E-06	8.51E-09	1.41E-08	1.15E-06	
Ru-106	9.99E-10	0.00E+00	2.22E-09	2.55E-08	2.89E-08	
Sb-125	0.00E+00	0.00E+00	1.44E-09	2.11E-08	2.26E-08	
Cs-134	1.22E-08	1.70E-06	2.00E-07	6.29E-07	2.55E-06	
Cs-136	1.96E-09	2.18E-06	1.78E-08	0.00E+00	2.22E-06	
Cs-137	2.85E-08	3.70E-06	2.66E-07	9.99E-07	4.81E-06	
Ba-140	8.51E-09	0.00E+00	1.48E-07	0.00E+00	1.55E-07	
Ce-141	8.14E-10	8.88E-07	9.62E-09	1.63E-10	8.88E-07	
전체입자					7.19E-05	

표 3.4-5 기체폐기물처리계통에서 연간 방출되는 방사능량 (단위 : TBq/yr)

					
핵 종	영광 1,2호기 ¹⁾	영광3,4호기 ¹⁾	영광5,6호기 ²⁾	합 계	
H-3	8.03E+00	1.93E+00	1.85E+01	2.85E+01	
C-14	5.92E-01	5.40E-01	5.40E-01	1.67E+00	
XE-131M	1.25E-02	0.00E+00	9.62E+01	9.62E+01	
XE-133	1.10E+01	7.85E+00	3.18E+02	3.37E+02	
XE-133M	2.54E-02	0.00E+00	7.04E+00	7.07E+00	
XE-135	1.09E-01	4.81E-03	3.70E+01	3.71E+01	
XE-135M	3.70E-05	0.00E+00	5.18E+00	5.18E+00	
XE-138	0.00E+00	0.00E+00	4.44E-01	4.44E-01	
KR-85	5.69E-03	0.00E+00	1.55E+02	1.55E+02	
KR-85M	3.57E-05	0.00E+00	4.22E+00	4.22E+00	
KR-87	1.50E-05	0.00E+00	1.55E+00	1.55E+00	
KR-88	4.88E-05	0.00E+00	5.10E+00	5.10E+00	
AR-41	2.09E+00	2.16E-02	2.52E+00	4.63E+00	
I-131	6.55E-05	1.54E-04	6.06E-03	6.28E-03	
I-132	6.81E-06	1.87E-08	3.40E-02	3.40E-02	
I-133	1.11E-07	3.33E-07	2.08E-02	2.08E-02	
I-134	0.00E+00	0.00E+00	5.70E-02	5.70E-02	
I-135	0.00E+00	0.00E+00	4.00E-02	4.00E-02	
CR-51	6.66E-07	5.96E-06	1.33E-05	1.99E-05	
MN-54	1.11E-07	2.59E-07	7.40E-06	7.77E-06	
FE-59	4.07E-07	0.00E+00	3.78E-06	4.19E-06	
CO-57	3.70E-08	3.70E-08	1.11E-04	1.11E-04	
CO-58	1.10E-03	9.44E-07	5.10E-05	1.15E-03	
CO-60	1.63E-03	9.44E-07	1.04E-05	1.64E-03	
SR-89	2.87E-10	0.00E+00	2.00E-05	2.00E-05	
SR-90	1.63E-08	1.85E-08	8.14E-06	8.17E-06	
ZR-95	3.70E-08	0.00E+00	7.40E-07	7.77E-07	
NB-95	7.40E-08	1.48E-07	4.22E-06	4.44E-06	
MO-99	0.00E+00	4.59E-09	0.00E+00	4.59E-09	
RU-103	0.00E+00	0.00E+00	2.30E-06	2.30E-06	
RU-106	0.00E+00	1.11E-07	5.78E-08	1.69E-07	
CD-109	0.00E+00	1.02E-05	0.00E+00	1.02E-05	
SB-124	0.00E+00	4.14E-07	0.00E+00	4.14E-07	
SB-125	0.00E+00	0.00E+00	4.52E-08	4.52E-08	
CS-134	0.00E+00	5.96E-06	5.10E-06	1.11E-05	
CS-136	0.00E+00	0.00E+00	4.44E-06	4.44E-06	
CS-137	0.00E+00	0.00E+00	8.36E-06	8.36E-06	
BA-135m	0.00E+00	1.92E-08	0.00E+00	1.92E-08	
BA-140	0.00E+00	0.00E+00	3.10E-07	3.10E-07	
CE-141	0.00E+00	3.70E-08	1.78E-06	1.82E-06	
CE-143	0.00E+00	5.03E-06	0.00E+00	5.03E-06	

주1) 2개 호기 기준으로 실제 방출량 자료.

주2) 2개 호기 기준으로 영광 5,6호기 최종안전성분석보고서에 제시된 자료.

3.4.2 액체방사성폐기물처리계통

가. 폐기물처리계통

1) 계통설명

액체방사성폐기물계통(LRS)은 방사성폐기물건물 내에 공용으로 설치되며 정상운전(시운전, 출력운전, 유지/보수와 재장전 등을 위한 운전정지 포함) 중에 발생하는 방사성 액체폐기물(이하 "폐액")을 수집, 저장하고 시료 채취/분석 결과에 따라 방사성 물질 및 불순물의제거를 위해 적절한 처리를 한다.

ICRP-60 신권고안에 따른 일반인 선량한도 및 10 CFR 50 부록 I의 ALARA 요건에 따라 예상운전사고를 포함한 정상운전기간 동안 발생되는 방사능 오염폐액을 수집하여 처리한 후 소외로 방출하도록 되어 있다.

액체방사성폐기물관리계통은 다음과 같이 구성되어 있다.

- 응축수 탈염 및 증기발생기 취출수 처리계통으로 구성되는 2차측 화학제어계통
- 사용후연료저장조 냉각 및 정화계통
- 방사성배수계통
- · 방사성세탁계통
- 액체방사성폐기물계통

계통의 폐액 저장/처리 용량은 발생 가능한 최대 폐액부피를 기준으로 정해진다. LRS의 주요 처리설비는 원심분리기, 이온교환기 등인데 수집폐액의 특성에 따라 처리경로가 달라지도록 계통 내 폐액 유로가 조절된다. 또한, 기기, 밸브, 배관 및 제어계통은 운전성과 유지/보수성을 향상시키고 방사선 피폭의 최소화가 가능하도록 설계, 제작, 설치, 운전된다.

2) 계통구성

가) 계통도

그림 3.4-2는 LRS의 흐름도(Flow Diagram)를 보여주고 있다.

나) 주요 구성설비

LRS에 설치되는 주요설비의 특징과 제원은 표 3.4-6에서 표 3.4-8에 나타나있다.

다) 독립설비 및 공용설비

액체폐기물 처리계통은 영광5,6호기 공용설비로서, 방사성폐기물건물에 설치하며, 방사성세탁계통은 각 호기별로 별도의 출입통제 건물에 설치되어 있다.

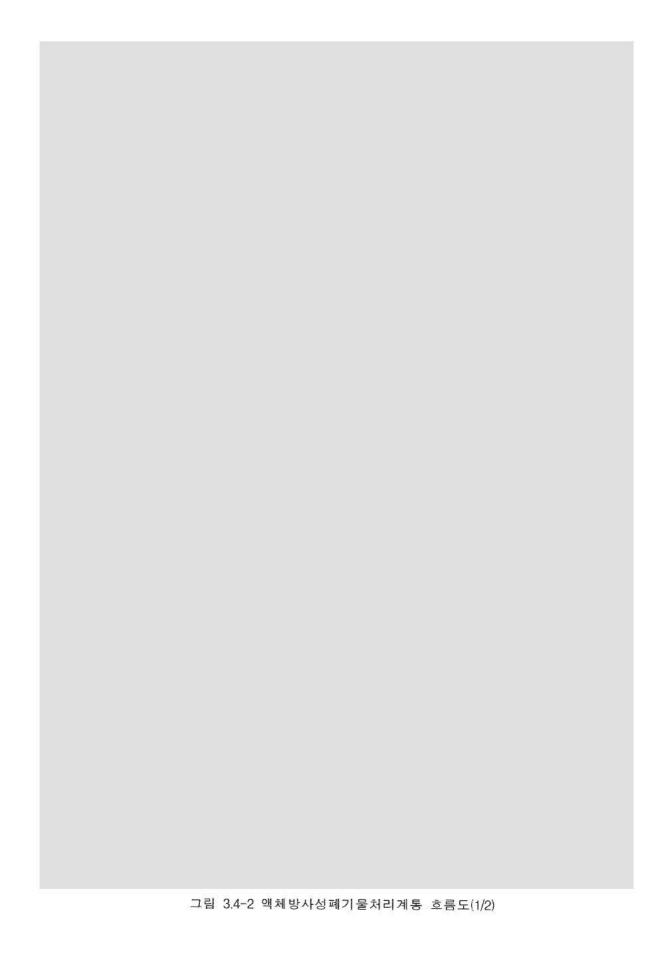
3) 계통운전

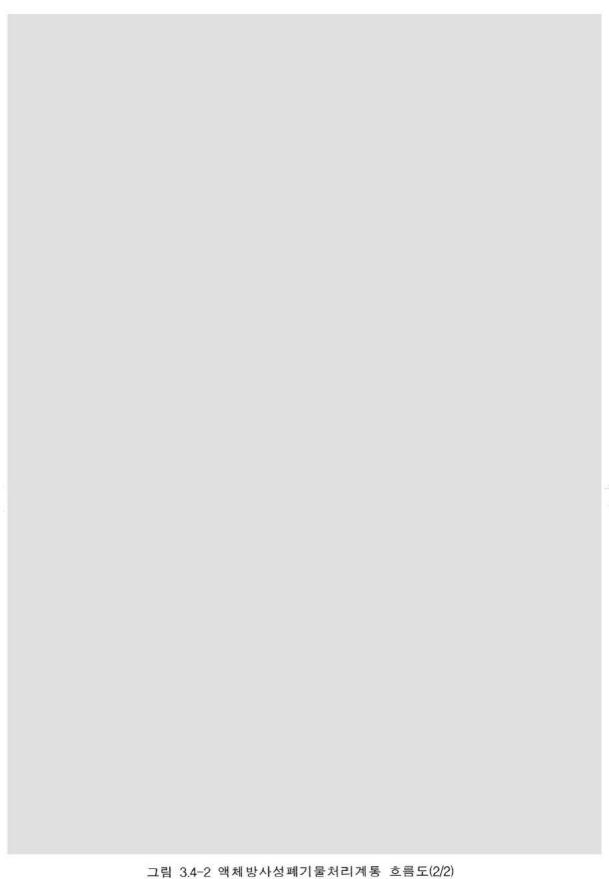
LRS는 운전원의 선택에 따라 자동 및 수동 일괄처리(batch) 방식으로 운전된다. 일반적으

로 폐기물 수집은 자동으로 이루어지며, 처리경로는 운전원에 의해 선택되도록 한다. HTDS(High Total Dissolved Solid) 폐액, LTDS(Low Total Dissolved Solid) 폐액은 원심분리기와 탈염기계통으로 이송되어 처리되며, 화학배수폐액의 처리경로는 LTDS 처리경로와 동일하다. 세탁폐액은 여과 처리되며, 시료채취 후 방출규제 기준에 적합한 경우 LRS 감시탱크 방출배관을 통해 방출된다. 수집된 폐액속에 존재하는 부유물질을 제거하기 위해 원심분리기를 설치하며, 선택성 이온교환기를 포함하는 탈염기계통이 운전된다.

처리 전 폐액은 어떠한 경우에도 감시탱크에 입력되어서는 안되며 또한 소외로 방출하기위한 요건을 만족시키지 못하는 처리 후 폐액은 공급탱크로 다시 보내어져서 재처리된다. 계통의 운전은 수동으로 시작되나 장애 요인이 발생할 경우 자동운전 정지가 가능하며, 자동운전 중 운전원에 의한 수동개입으로 원하는 계통상태를 유지할 수 있다. 이 경우 방사선 피폭의 최소화를 위해 원격운전 계측제어 장치를 적극 활용한다. 처리 후 폐액은 감시탱크로 보내져 시료채취와 분석이 수행된 후 공급탱크의 이송여부가 결정된다. 폐액의 환경방출은 감시탱크를 통해서만 가능하며, 감시탱크의 출구측 밸브가 열려 방사성폐액의 임의 환경방출이 발생하지 못하도록 연동장치가 되어 있다.

표 3.4-6 액체방사성폐기물처리계통 주요 펌프의 특징과 제원


펌 프 명	수 광	형 태	설계유량 (L/min)	토출압력 (kg/cm²)	재 질
HTDS폐액펌프	2	원심	567.7	4.57	SS _.
LTDS폐액펌프	2	원심	567.7	4.57	SS
화학폐액펌프	2	원심	416.3	4.57	SS
주입펌프	2	원심	567.7	10.69	SS
감시탱크펌프	2	원심	1,060	9.07	SS


표 3.4-7 액체방사성폐기물처리계통 주요 탱크의 특징과 제원

탱크 명	수 량	용 량 (m'/대)	운전압력/온도 (kg/c㎡/°C)	설계압력/온도 (kg/cm²/℃)	재 질
HTDS폐액탱크	2	68.1	대기압/48.9	대기압/93.3	SS
LTDS폐액탱크	2	68.1	대기압/48.9	대기압/93.3	SS
화학폐액탱크	2	34.1	대기압/48.9	대기압/93.3	SS
주입탱크	2	68.1	대기압/48.9	대기압/93.3	SS
감시펌프	2	102.2	대기압/48.9	대기압/93.3	SS

표 3.4-8 액체방사성폐기물처리계통 주요 처리설비의 특징과 제원

설 비 명	수 량	설계유량	설계압력/온도	운전압력/온도	재 질
	***************************************	(L/min)	(kg/cm²/℃)	(kg/cm²/℃)	
흡착밴드	4(계열당 2)	227.1	14.06/93.3	10.55/48.9	SS
선택성이온교환기	2(계열당 1)	227.1	14.06/93.3	10.55/48.9	SS
정화이온교환기	2(계열당 1)	227.1	14.06/93.3	10.55/48.9	SS
양이온교환기	2(계열당 1)	227.1	14.06/93.3	10.55/48.9	SS
음이온교환기	2(계열당 1)	227.1	14.06/93.3	10.55/48.9	SS
원심분리기(디켄터)	2(계열당 1)	227.1	_	1/82	SS

나. 방사성물질의 처리

1) 입력 유량율 및 방사능량

액체 방사성폐기물계통에서 처리해야 할 입력 유량율 및 방사능량이 표 3.4-9에 요약되어 있다.

2) 액체 폐기물의 종류별 처리방법

가) 고용존고형물 폐액 (HTDS 폐액)

수집탱크에 수집된 HTDS 폐액은 해당 처리기기의 효율을 높이고 기기보호를 위해 그 특성이 조절된다(전처리). 전처리를 실시한 후 입자성 물질을 제거하기 위해 원심 분리기로 유입되며, 원심분리기에서는 0.1μ m 크기의 입자성물질이 대부분 제거되고, 필요한 경우 입자제거 효율을 높이기 위해 폴리머 첨가제를 주입하기도 한다. 액체방사성폐기물을 처리계통은 뱃치처리를 기본으로 하여 설계되는데 이를 위해서 공급탱크를 두고 있다.

원심분리기를 통과한 HTDS 폐액은 공급탱크에 모여져서 이온교환기 트레인을 거쳐 추가로 처리된다. 이온교환기 트레인은 일반 이온교환기와 선택성 이온교환기로 구성되며, 선택성 이온교환기에서는 Cs과 같은 폐액속의 주요 핵종을 제거하고, 일반 이온교환기에서는 Co를 비롯한 양이온과 음이온 핵종을 제거한다. 공급탱크 후단에는 이동식 증발기계통을 연결할 수 있는 연결부가 설치된다. 한편 원심분리 후 발생된 슬러지는 포장되어 방사성 폐기물 건물 내 임시 저장지역으로 보내진다. 이온교환기 트레인에서 처리된 폐액은 감시탱크로 보내지고 그곳에서 시료채취 분석을 통해 방출, 또는 재처리 여부가 결정된다.

나) 저용존고형물 폐액(LTDS 폐액)

정상운전중 저용존고형물폐액탱크에는 여러 건물에서 발생되는 방사능 준위가 낮은 저용 존고형물폐액이 수집된다. 또한 폐수지탱크로부터의 분리수 및 수지 이송수도 저용존고형 물폐액탱크에 수집된다. 필요시, 저용존고형물폐액탱크는 고용존고형물폐액탱크의 보조탱크 로도 사용될 수 있다.

저용존고형물폐액탱크가 만수위가 되거나 (방사성폐기물건물 제어실내 고수위 경보 표시) 또는 예정수위에 도달하게 되면, 저용존고형물폐액탱크내 방사성폐액을 처리하기 시작한다. 저용존고형물폐액탱크에 수집된 폐액은 먼저 충분히 재순환시켜 균질하게 섞은 후, 시료채취를 하여 폐액의 화학 및 방사능 특성을 분석한다. 저용존고형물탱크에 수집된 폐액은 대부분 전기전도도와 방사능 준위가 낮은 폐액이므로, 대부분의 저용존고형물폐액은 주입탱크로 이송하여 탈염기계통에서 처리한다. 탈염기계통에서 처리된 폐액은 감시탱크로 이송하여, 고용존고형물폐액과 같은 공정으로 처리된다. 그러나 시료채취 분석 결과 원심분리기에서의 처리가 필요하면 원심분리기로 처리한 후, 주입탱크로 이송되며 이후의 처리공정은 고용존고형물폐액과 같은 방법으로 처리된다.

표 3.4-9 액체방사성폐기물처리계통 폐기물 유입량¹⁾

	······································	
발 생 원	일일예상 발생량 (Gallon/Day-Unit)	비 방사능 ²⁾
○ HTDS 및 LTDS 폐액	(Ganon Day Ont)	
- 원자로냉각재펌프 밀봉수 누설	20	0.1
- 일차냉각재 누설 및 기타 유입원	10	1.67
- 폐수지탱크 배수	10	1.0
- 일차냉각계통 기기배수	500	0.001
- 보조건물 기기배수	80	1.0
- 보조건물 바닥배수	200	0.1
- 일차시료채취계통 배수	200	0.05
- 핵연료건물 바닥배수	700	0.001
o 화학 폐액 ³⁾		
교육교 기기 및 지역제염 폐액	400	0.01
o 세제성폐기물		
- 세탁폐액	300	4)
- 개인샤워폐액	200	
o 2차계통 오염으로 인한 복수탈염기 재생폐액		
- HTDS 폐액	20,000	5)
- LTDS 폐액	20,000	5)
- 화학 폐액	10,000	5)

- 주1) 폐기물 유입량은 NUREG-0017-1985 및 ANSI/ANS 55.6-1993에 근거한 값임.
- 주2) 비방사능은 일차냉각재의 방사능에 대한 비율을 나타냄.
- 주3) 화학폐기물 유입량은 예상 발생량에 40%의 설계여유도를 취한 1일 기준 최대발생 가능량의 합을 나타냄.
- 주4) NUREG-0017에 근거한 값임.
- 중5) 본 폐기물은 일반적으로 바다로 방출하나 오염준위가 허용제한치 이상인 경우 액체방 사성폐기물계통으로 재 순환시켜 재처리됨.

다) 화학폐액(Chemical Waste)

화학폐액은 원심분리기로 처리할 수 있다. 화학폐액 처리 부계통 전단에 화학배수탱크와 화학폐액 수집탱크가 설치되기 때문에 화학폐액 전용 공급탱크는 필요치 않으며, 원심분리 기를 통과한 화학폐액은 직접 감시탱크로 보내지거나 또는 이온교환기를 거쳐 감시탱크로 보내진다. 감시탱크는 시료채취를 통해 폐액의 방출과 재처리 여부가 결정된다. 표 3.4-10은 액체 방사성폐기물 처리를 위한 주요 기기의 제염계수를 보여주고 있다.

표 3.4-10 액체방사성폐기물처리계통 주요기기 제염계수1)

이온교환기 ²⁾				
	불활성기체 삼중수소	할로겐 핵종	Cs, Rb	기타
선택성 이온교환기	1	1	100	1
양이온 이온교환기	1	1	10	10
음이온 이온교환기	1	100	1	1
혼합상 이온교환기	1	5	1	10
원심분리기	1	1	1	5

자료: NUREG-0017, Rev. 1, 1985

주1) 제염계수 : <u>기기입력방사능농도</u> 기기방출방사능농도

주2) 불활성 기체, 삼중수소, 질소 (N-16)에 대한 제염계수는 1이다.

라) 제염폐액

특수 제염폐액과 같은 액체폐기물계통에서 처리하기 곤란한 화학폐액이 발생하는 경우를 대비하여 이동식 화학폐액처리설비를 연결할 수 있는 플랜지가 설치되어 있고, 필요한 설비 는 발생상황에 따라 적절한 설비를 구매하여 운영할 계획이다.

마) 세탁폐액

방사성세탁폐액은 오염 가능지역으로부터 발생된 세탁수, 세면수 및 출입통제건물 바닥배수 등이다. 수집된 폐액들은 여과처리되며 시료채취후 방출 규제 기준에 적합한 경우 액체 방사성폐기물계통의 감시탱크 방출배관을 통해 방출된다. 그러나, 추가처리가 필요한 경우, 액체방사성폐기물계통의 화학폐액 배수탱크로 이송되어 처리된다.

두(2)대의 방사성세탁계통 배수탱크중 한(1)대의 탱크가 만수위에 이르게 되면 운전원은 탱크로 유입되는 유로를 다른 배수탱크로 바꾸고, 탱크내 폐액은 펌프를 이용하여 재순환시 켜 균질하게 섞은 후 시료를 채취하여 폐액의 화학 및 방사능 특성을 분석하고 이 분석결과 에 근거하여 다음 단계의 처리공정을 선택한다. 즉, 시료분석결과 폐액의 방사능 준위가 낮 은 경우 이들 폐액은 방사성세탁계통 배수필터로 처리한 뒤 액체방사성폐기물계통 방출배관 을 거쳐 소외방출하고 방사능 준위가 높아 방사성세탁계통 처리능력을 초과하는 경우 액체

3) 환경방출

액체방사성폐기물 처리계통으로부터 환경으로 방출되는 방사성 물질은 발전소 인근주민의 아전을 해치지 않도록 철저히 통제, 감시된다.

방사성물질은 방출이 결정된 액체방출물에 섞이게 되는데, 이러한 액체방출물은 감시 탱크(Monitor Tank)를 통해서만 환경으로 방출되도록 함으로써 방사성 물질의 임의 환경방출가능성을 최소화하고 있다. 또한, 방출구에는 방사선 감시기를 설치하여 고준위 방사능이 감지되면 자동으로 방출이 차단되도록 되어있다. 그리고 전원상실 등 운전상태를 정상적으로 유지할 수 없는 상황에서도 방출밸브를 통한 폐액의 방출이 불가능하도록 설계된다. 감시탱크로부터 방출되는 폐액은 0.34㎡/hr (90gpm) 정도의 방출율을 가지며 방출유량율 3,066㎡/hr (810,000gpm)인 순환수와 방출유량율 189.3㎡/hr (56,000gpm)인 필수용수 등에 희석된다음 순환수 방출통로를 통해 방출되므로 약 9,600 정도의 희석비를 갖는다.

영광 5,6호기의 액체폐기물의 연간 예상방출량은 PWR-GALE 전산프로그램에 의해 계산되었으며, 표 3.4-11에 주어진다.

한편, 영광부지에 영광 5,6호기가 가동하게 되면 총 6기가 가동하게 되며 다수호기 가동으로 인한 주변 환경에서의 방사성 핵종별 방사능농도와 주변 주민이 연간 피폭선량을 평가하는데 사용되는 액체폐기물의 연간 총방출량은 마찬가지로 표 3.4-11에 보여진다.

표에서 현재 상업운전 중에 있는 영광 1,2호기 및 3,4호기의 가동으로 인한 액체폐기물의 연간방출량은 1998년도 원자력발전소 방사선관리 연보에 제시된 1995년부터 1998년까지의 실제 방출량 자료 중 방사성 핵종별로 최대 방출량을 보이는 연도의 방출량을 사용하였으며, 현재 건설중인 영광 5,6호기의 연간 예상 방출량은 영광 5,6호기 FSAR에 제시된 값을 인용하였다.

참고로, 영광 5,6호기 액체방사성폐기물계통에서는 기존호기와는 달리 Boron 제거효과가 탁월한 증발기를 제외함으로써 Boron을 같은 정도로 효율적으로 제거할 수는 없지만 다음 과 같은 방법으로 일부 Boron을 제거할 수 있다.

- · 입자성 Boron은 원심분리기에서 제거
- · 이온형태의 Boron은 음이온교환기에서 제거

현재 상기 제거수단에 의한 Boron제거효율을 정량적으로 평가할 모델 및 근거자료가 없는 실정이지만, 영광 5,6호기 액체방사성폐기물계통 설계와 유사하게 동 계통에 여과기(영광 5,6호기의 원심분리기에 해당)와 선택성이온교환기를 이용하여 방사성폐액을 처리하고 있는 미국 Diablo Canyon 원전의 경우 1992년 액체방사성폐기물계통을 통해 방출되는 Boron농도는 197mg/ ℓ 이었으므로 영광 5,6호기의 경우에도 유사한 수준일 것으로 예상된다.

그러나 국내 가동중인 원전의 방사성폐액저장탱크에서의 평균 Boron농도가 $400\sim600$ mg/ ℓ 를 보이고 있으므로, 보수적으로 전량 방출된다고 하면 영광 5,6호기에서 최대 평균 Boron방출농도는 약 600mg/ ℓ 로 추정된다.

영광 5,6호기에서 액체방사성폐기물은 냉각순환수 방출통로를 통해 해수에 유입되기 전에 2차측 냉각순환수와 필수용수 등에 희석되며 희석비는 전술한 바와 같이 9,600정도이므로, Boron이 소외 방출농도는 $6.3 \times 10^{-2} \mathrm{mg}/\ell$ 정도로 예상된다.

한편, 영광원자력발전소 주변 일반환경 조사 및 평가보고서(한국전력공사 전력연구원, 1998)에 의하면 영광해역에서 Boron의 연 평균치는 4.2~4.4 mg/ℓ의 분포를 나타내는 것으로 조사되었다. 따라서, 영광 5,6호기에 대한 Boron의 소외 방출농도 6.3×10^{-2} mg/ℓ는 영광해역의 Boron의 연 평균치와 비교하여 무시할 만한 정도일 것으로 예측된다.

그리고, 해수 중 Boron이 자연농도는 4.5 mg/ ℓ 정도이며 이러한 자연농도는 해양생태계에 영향을 주지 않는 것으로 기술하고 있다("Water Quality Criteria", National Academy of Sciences & National Academy of Engineering, 1974 참조).

따라서, 영광 5,6호기의 액체방사성폐기물에서 증발기를 제외함으로써 Boron의 소외 방출 농도가 다소 증가하더라도 주변 해수 중 Boron의 농도 및 해양생태계에 미치는 영향은 미 미할 것으로 예상된다.

표 3.4-11 액체방사성폐기물처리계통에서 연간 방출되는 방사능량 (단위 TBq/yr)

	핵 종	영광 1,2호기 ¹⁾	영광 3,4호기 ¹⁾	영광 5,6호기 ²⁾	합 계
	H-3	4.97E+01	1.07E+01	6.44E+01	1.25E+02
	B-7	0.00E+00	1.11E-06	0.00E+00	1.11E-06
	NA-24	7.08E-05	0.00E+00	4.08E-04	4.79E-04
	P-32	0.00E+00	0.00E+00	1.44E-05	1.44E-05
	K-40	0.00E+00	1.21E-05	0.00E+00	1.21E-05
	AR-41	1.72E-05	5.55E-07	0.00E+00	1.78E-05
1 82	CR-51	3.81E-05	0.00E+00	5.92E-04	6.30E-04
	MN-54	1.03E-04	3.61E-06	4.22E-04	5.29E-04
	FE-55	0.00E+00	0.00E+00	6.36E-04	6.36E-04
	FE-59	5.71E-05	0.00E+00	6.36E-04	6.93E-04
	CO-57	0.00E+00	4.81E-07	0.00E+00	4.81E-07
	CO-58	1.57E-03	9.73E-05	9.62E-04	2.63E-03
	CO-60	3.09E-04	3.91E-06	1.11E-03	1.42E-03
	NI-56	0.00E+00	2.59E-07	0.00E+00	2.59E-07
	NI-63	0.00E+00	0.00E+00	1.26E-04	1.26E-04
	ZN-65	0.00E+00	0.00E+00	4.44E-05	4.44E-05
	GA-66	0.00E+00	6.54E-07	0.00E+00	6.54E-07
	BR-84	0.00E+00	0.00E+00	5.04E-06	5.04E-06
	KR-85M	0.00E+00	8.14E-07	0.00E+00	8.14E-07
	KR-87	0.00E+00	1.11E-06	0.00E+00	1.11E-06
	RB-88	0.00E+00	0.00E+00	8.88E-06	8.88E-06
	SR-89	8.95E-06	0.00E+00	1.78E-05	2.68E-05
	SR-90	3.26E-06	0.00E+00	2.00E-06	5.26E-06
	SR-91	0.00E+00	1.33E-06	5.26E-06	6.59E-06
	Y-91M	0.00E+00	1.78E-06	3.26E-06	5.04E-06
	Y-91	0.00E+00	0.00E+00	7.26E-06	7.26E-06
	Y-93	0.00E+00	2.04E-06	2.36E-05	2.56E-05
	ZR-95	1.42E-05	3.61E-07	1.11E-04	1.26E-04
	ZR-97	0.00E+00	1.48E-07	0.00E+00	1.48E-07
	NB-95	6.21E-05	0.00E+00	1.63E-04	2.25E-04
	NB-97	0.00E+00	9.49E-07	0.00E+00	9.49E-07
	MO-99	0.00E+00	1.04E-06	2.22E-04	2.23E-04
	TC-99M	0.00E+00	8.71E-08	2.08E-04	2.08E-04
	RU-103	0.00E+00	0.00E+00	6.22E-04	6.22E-04
	RU-106	0.00E+00	1.11E-06	8.88E-03	8.88E-03
	RH-103M	0.00E+00	0.00E+00	6.06E-04	6.06E-04
	RH-106	0.00E+00	0.00E+00	8.14E-03	8.14E-03
	AG-110	0.00E+00	0.00E+00	1.48E-05	1.48E-05
	AG-110M	0.00E+00	0.00E+00	2.00E-04	2.00E-04
	CD-109	0.00E+00	1.68E-05	0.00E+00	1.68E-05
	SN-113	0.00E+00	2.22E-07	0.00E+00	2.22E-07
L	SB-124	0.00E+00	1.91E-05	3.18E-05	5.09E-05

표 3.4-11 액체방사성폐기물처리계통에서 연간 방출되는 방사능량(계속) (단위 TBq/yr)

행 중 영광 1,2호기				2	
TE-129M 0.00E+00 0.00E+00 1.48E-05 1.48E-05 TE-129 0.00E+00 0.00E+00 1.78E-05 1.78E-05 TE-131 0.00E+00 6.29E-06 5.18E-06 1.15E-05 TE-131M 0.00E+00 0.00E+00 2.60E-05 2.60E-05 TE-132 0.00E+00 8.18E-07 6.22E-05 6.30E-05 I-123 0.00E+00 2.46E-07 0.00E+00 2.46E-07 I-131 4.55E-06 1.97E-05 6.06E-03 6.08E-03 I-132 0.00E+00 0.00E+00 6.44E-04 6.44E-04 I-133 5.66E-06 1.20E-07 4.58E-03 4.59E-03 I-134 0.00E+00 0.00E+00 2.36E-04 2.36E-04 I-135 0.00E+00 1.85E-07 2.60E-03 2.60E-03 XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-134 2.27E-05 0.00E+00 1.52E-05 9.77E-05	핵 종	영광 1,2호기 ¹⁾	영광 3,4호기 ¹⁾	영광 5,6호기 ²⁾	합 계
TE-129 0.00E+00 0.00E+00 1.78E-05 1.78E-05 TE-131 0.00E+00 6.29E-06 5.18E-06 1.15E-05 TE-131M 0.00E+00 0.00E+00 2.60E-05 2.60E-05 TE-132 0.00E+00 8.18E-07 6.22E-05 6.30E-05 I-123 0.00E+00 2.46E-07 0.00E+00 2.46E-07 I-131 4.55E-06 1.97E-05 6.06E-03 6.08E-03 I-132 0.00E+00 0.00E+00 6.44E-04 6.44E-04 I-133 5.66E-06 1.20E-07 4.58E-03 4.59E-03 I-134 0.00E+00 0.00E+00 2.36E-04 2.36E-04 I-135 0.00E+00 1.85E-07 2.60E-03 2.60E-03 XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03	SB-125	0.00E+00	6.73E-07	0.00E+00	6.73E-07
TE-131 0.00E+00 6.29E-06 5.18E-06 1.15E-05 TE-131M 0.00E+00 0.00E+00 2.60E-05 2.60E-05 TE-132 0.00E+00 8.18E-07 6.22E-05 6.30E-05 I-123 0.00E+00 2.46E-07 0.00E+00 2.46E-07 I-131 4.55E-06 1.97E-05 6.06E-03 6.08E-03 I-132 0.00E+00 0.00E+00 6.44E-04 6.44E-04 I-133 5.66E-06 1.20E-07 4.58E-03 4.59E-03 I-134 0.00E+00 0.00E+00 2.36E-04 2.36E-04 I-135 0.00E+00 1.85E-07 2.60E-03 2.60E-03 XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-134 2.27E-05 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07	TE-129M	0.00E+00	0.00E+00	1.48E-05	1.48E-05
TE-131M 0.00E+00 0.00E+00 2.60E-05 2.60E-05 TE-132 0.00E+00 8.18E-07 6.22E-05 6.30E-05 I-123 0.00E+00 2.46E-07 0.00E+00 2.46E-07 I-131 4.55E-06 1.97E-05 6.06E-03 6.08E-03 I-132 0.00E+00 0.00E+00 6.44E-04 6.44E-04 I-133 5.66E-06 1.20E-07 4.58E-03 4.59E-03 I-134 0.00E+00 0.00E+00 2.36E-04 2.36E-04 I-135 0.00E+00 1.85E-07 2.60E-03 2.60E-03 XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-135 8.95E-06 7.77E-07 0.00E+00 9.73E-06 CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07	TE-129	0.00E+00	0.00E+00	1.78E-05	1.78E-05
TE-132 0.00E+00 8.18E-07 6.22E-05 6.30E-05 I-123 0.00E+00 2.46E-07 0.00E+00 2.46E-07 I-131 4.55E-06 1.97E-05 6.06E-03 6.08E-03 I-132 0.00E+00 0.00E+00 6.44E-04 6.44E-04 I-133 5.66E-06 1.20E-07 4.58E-03 4.59E-03 I-134 0.00E+00 0.00E+00 2.36E-04 2.36E-04 I-135 0.00E+00 1.85E-07 2.60E-03 2.60E-03 XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-135 8.95E-06 7.77E-07 0.00E+00 9.73E-06 CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 1.52E-06 0.00E+00 1.52E-06	TE-131	0.00E+00	6.29E-06	5.18E-06	1.15E-05
I-123 0.00E+00 2.46E-07 0.00E+00 2.46E-07 I-131 4.55E-06 1.97E-05 6.06E-03 6.08E-03 I-132 0.00E+00 0.00E+00 6.44E-04 6.44E-04 I-133 5.66E-06 1.20E-07 4.58E-03 4.59E-03 I-134 0.00E+00 0.00E+00 2.36E-04 2.36E-04 I-135 0.00E+00 1.85E-07 2.60E-03 2.60E-03 XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-135 8.95E-06 7.77E-07 0.00E+00 9.73E-06 CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-139 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-04 8.88E-04 8.89E-04	TE-131M	0.00E+00	0.00E+00	2.60E-05	2.60E-05
I-131 4.55E-06 1.97E-05 6.06E-03 6.08E-03 I-132 0.00E+00 0.00E+00 6.44E-04 6.44E-04 I-133 5.66E-06 1.20E-07 4.58E-03 4.59E-03 I-134 0.00E+00 0.00E+00 2.36E-04 2.36E-04 I-135 0.00E+00 1.85E-07 2.60E-03 2.60E-03 XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-135 8.95E-06 7.77E-07 0.00E+00 9.73E-06 CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-04 8.89E-04 BA-140 0.00E+00 1.26E-03 1.26E-03 CE-139	TE-132	0.00E+00	8.18E-07	6.22E-05	6.30E-05
I-132 0.00E+00 0.00E+00 6.44E-04 6.44E-04 I-133 5.66E-06 1.20E-07 4.58E-03 4.59E-03 I-134 0.00E+00 0.00E+00 2.36E-04 2.36E-04 I-135 0.00E+00 1.85E-07 2.60E-03 2.60E-03 XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-135 8.95E-06 7.77E-07 0.00E+00 9.73E-06 CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 0.00E+00 8.88E-04 8.88E-04 BA-140 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 <td>I-123</td> <td>0.00E+00</td> <td>2.46E-07</td> <td>0.00E+00</td> <td>2.46E-07</td>	I-123	0.00E+00	2.46E-07	0.00E+00	2.46E-07
I-133 5.66E-06 1.20E-07 4.58E-03 4.59E-03 I-134 0.00E+00 0.00E+00 2.36E-04 2.36E-04 I-135 0.00E+00 1.85E-07 2.60E-03 2.60E-03 XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-135 8.95E-06 7.77E-07 0.00E+00 9.73E-06 CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 0.00E+00 8.88E-04 8.88E-04 BA-139 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05 <td>I-131</td> <td>4.55E-06</td> <td>1.97E-05</td> <td>6.06E-03</td> <td>6.08E-03</td>	I-131	4.55E-06	1.97E-05	6.06E-03	6.08E-03
I-134 0.00E+00 0.00E+00 2.36E-04 2.36E-04 I-135 0.00E+00 1.85E-07 2.60E-03 2.60E-03 XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-135 8.95E-06 7.77E-07 0.00E+00 9.73E-06 CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-04 8.88E-04 8.89E-04 LA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	I-132	0.00E+00	0.00E+00	6.44E-04	6.44E-04
I-135 0.00E+00 1.85E-07 2.60E-03 2.60E-03 XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-135 8.95E-06 7.77E-07 0.00E+00 9.73E-06 CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-139 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-04 8.89E-04 LA-140 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	I-133	5.66E-06	1.20E-07	4.58E-03	4.59E-03
XE-133 2.51E-03 1.73E-05 0.00E+00 2.53E-03 XE-135 8.95E-06 7.77E-07 0.00E+00 9.73E-06 CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 0.00E+00 8.88E-04 8.88E-04 BA-139 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-07 8.88E-04 8.89E-04 LA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	I-134	0.00E+00	0.00E+00	2.36E-04	2.36E-04
XE-135 8.95E-06 7.77E-07 0.00E+00 9.73E-06 CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 0.00E+00 8.88E-04 8.88E-04 BA-139 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-07 8.88E-04 8.89E-04 LA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	I-135	0.00E+00	1.85E-07	2.60E-03	2.60E-03
CS-134 2.27E-05 0.00E+00 1.55E-03 1.57E-03 CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 0.00E+00 8.88E-04 8.88E-04 BA-139 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-07 8.88E-04 8.89E-04 LA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	XE-133	2.51E-03	1.73E-05	0.00E+00	2.53E-03
CS-136 1.48E-06 0.00E+00 9.62E-05 9.77E-05 CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 0.00E+00 8.88E-04 8.88E-04 BA-139 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-07 8.88E-04 8.89E-04 LA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	XE-135	8.95E-06	7.77E-07	0.00E+00	9.73E-06
CS-137 3.15E-05 1.16E-06 2.14E-03 2.17E-03 BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 0.00E+00 8.88E-04 8.88E-04 BA-139 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-07 8.88E-04 8.89E-04 LA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	CS-134	2.27E-05	0.00E+00	1.55E-03	1.57E-03
BA-135M 0.00E+00 7.03E-07 0.00E+00 7.03E-07 BA-137M 0.00E+00 0.00E+00 8.88E-04 8.88E-04 BA-139 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-07 8.88E-04 8.89E-04 LA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	CS-136	1.48E-06	0.00E+00	9.62E-05	9.77E-05
BA-137M 0.00E+00 0.00E+00 8.88E-04 8.88E-04 BA-139 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-07 8.88E-04 8.89E-04 LA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	CS-137	3.15E-05	1.16E-06	2.14E-03	2.17E-03
BA-139 0.00E+00 1.52E-06 0.00E+00 1.52E-06 BA-140 0.00E+00 8.88E-07 8.88E-04 8.89E-04 LA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	BA-135M	0.00E+00	7.03E-07	0.00E+00	7.03E-07
BA-140 0.00E+00 8.88E-07 8.88E-04 8.89E-04 LA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	BA-137M	0.00E+00	0.00E+00	8.88E-04	8.88E-04
LA-140 0.00E+00 0.00E+00 1.26E-03 1.26E-03 CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	BA-139	0.00E+00	1.52E-06	0.00E+00	1.52E-06
CE-139 0.00E+00 1.18E-07 0.00E+00 1.18E-07 CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	BA-140	0.00E+00	8.88E-07	8.88E-04	8.89E-04
CE-141 0.00E+00 1.59E-06 2.88E-05 3.04E-05	LA-140	0.00E+00	0.00E+00	1.26E-03	1.26E-03
	CE-139	0.00E+00	1.18E-07	0.00E+00	1.18E-07
CE-143 0.00E+00 2.66E-06 5.26E-05 5.53E-05	CE-141	0.00E+00	1.59E-06	2.88E-05	3.04E-05
	CE-143	0.00E+00	2.66E-06	5.26E-05	5.53E-05
CE-144 0.00E+00 1.59E-06 6.30E-06 7.89E-06	CE-144	0.00E+00	1.59E-06	6.30E-06	7.89E-06
PR-143 0.00E+00 0.00E+00 1.63E-05 1.63E-05	PR-143	0.00E+00	0.00E+00	1.63E-05	1.63E-05
PR-144 0.00E+00 0.00E+00 3.40E-04 3.40E-04	PR-144	0.00E+00	0.00E+00	3.40E-04	3.40E-04
HF-181 0.00E+00 1.11E-07 0.00E+00 1.11E-07	HF-181	0.00E+00	1.11E-07	0.00E+00	1.11E-07
W-187 0.00E+00 0.00E+00 3.48E-05 3.48E-05	W-187	0.00E+00	0.00E+00	3.48E-05	3.48E-05
AU-198 0.00E+00 1.07E-07 0.00E+00 1.07E-07	AU-198	0.00E+00	1.07E-07	0.00E+00	1.07E-07
HG-203 0.00E+00 1.28E-07 0.00E+00 1.28E-07	HG-203	0.00E+00	1.28E-07	0.00E+00	1.28E-07
NP-239 0.00E+00 0.00E+00 6.52E-05 6.52E-05	NP-239	0.00E+00	0.00E+00	6.52E-05	6.52E-05

주1) 2개 호기 기준으로 실제 방출량 자료.

주2) 2개 호기 기준으로 영광 5,6호기 최종안전성분석보고서에 제시된 자료.

3.4.3 고체방사성폐기물계통

가, 폐기물 처리계통

1) 계통설명

본 계통은 발전소 정상운전 및 과도 운전 시 발생하는 방사성 고체 폐기물을 저장 및 처분에 적합하도록 수집, 처리, 포장하고 포장된 폐기물을 발전소 부지 내 임시 저장고 또는 영구처분장으로 이송하기에 앞서 일정기간 저장하는 기능을 갖는 계통으로 다음과 같은 부계통으로 구성된다.

- 건조 폐기물 처리 부계통
- 여과기 취급 부계통
- 수지 전달 부계통
- 폐수지 장기저장 부계통
- 폐수지 건조처리 부계통

가) 건조폐기물 처리 부계통

본 계통은 운전이나 보수 중에 발생되는 건조폐기물에서 방사성 건조폐기물과 청정쓰레기를 분리한다. 분리된 방사성건조폐기물은 고체폐기물 압축기와 비닐폐기물 압축기에 의해 감용처리되며, 청정쓰레기는 별도의 지침에 따라 처리된다.

나) 여과기 취급 부계통

본 계통은 여과기 카트리지를 그 본제로부터 분리하여 방사성폐기물건물의 고체폐기물 처리지역으로 운반한다. 여과기 카트리지를 여과기 본체에서 분리하여 포장하기 위해서 본 계통은 여과기 취급캐스크, 작업용 차폐 플러그, 여과기 취급장비, 캐스크/드럼 운반기 등으로 구성되어있다.

다) 수지 전달 부계통

본 계통은 각 공정계통의 흡착대 및 탈염기에서 발생되는 폐수지를 제거하여 저장하며, 새 수지를 각 탈염기에 공급하는 기능을 한다. 본 계통은 보조건물 수지전달계통과 방사성 폐기물건물 수지전달계통으로 구성되어있다.

라) 폐수지장기저장 부계통

본 계통은 수지전달 부계통에서 이송된 고방사성 폐수지를 장기간 저장하여 충분히 방사능 붕괴를 시키기 위해, 폐수지장기저장탱크와 관련 배관 및 계측설비로 구성되어있다.

마) 폐수지건조처리 부계통

본 계통은 수지전달 부계통에서 이송된 저준위 폐수지와 폐수지장기저장 부계통에서 장기 저장된 뒤 이송되는 폐수지를 탈수 및 건조 처리하여, 고건전성 용기에 포장한다.

바) 폐기물건물 내의 폐기물 드럼 저장지역을 제외하고 부지내 폐기물 임시저장고 및 고준

위 폐기물 저장을 위한 시설은 영광 5,6호기 설계에 고려되지 않았으나, 영광 5,6호기에서 발생된 방사성폐기물드럼은 기존 폐기물 임시저장고로 운반하여 공동 관리하다.

2) 계통구성

가) 계통도

그림 3.4.-3은 고체방사성폐기물의 흐름도(Flow Diagram)를 보여주고 있다.

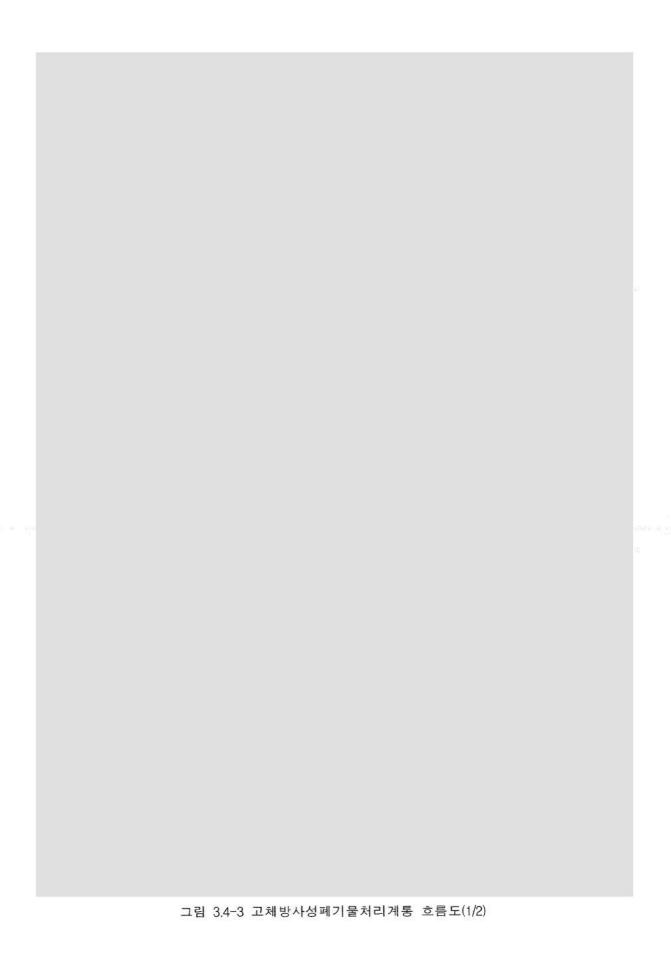
나) 주요 구성기기

고체방사성폐기물계통을 구성하고 있는 주요 기기에 대한 사양은 표 3.4-12와 같다.

다) 독립설비 및 공용설비

고체방사성폐기물계통은 양호기 공용으로 설치된다.

나, 방사성물질의 처리


발전소 정상운전 및 과도사고 시 발생하는 고체 방사성폐기물 처리에 대한 사항은 가)항에서 설명되었으므로 본 항에서는 고체 방사성폐기물의 취급, 운반 및 저장시설에 대한 사항과 출처별 고체 방사성폐기물 예상 발생량 및 방사능량에 대해 설명하기로 한다.

1) 고체 방사성폐기물의 취급, 운반 및 저장

포장된 모든 고체 방사성폐기물은 방사성폐기물건물 내 차폐된 폐기물 드럼 저장구역에 방사능 준위가 높은 폐필터 폐기물과 방사능 준위가 낮은 폐기물로 구분하여 저장하며, 사용되지 않은 폐기물 드럼들은 폐기물 건물내의 새드럼 저장구역에 저장한다.

방사성폐기물 건물 내에 있는 폐기물드럼저장구역에는 발전소 정상운전시 약 30~90일간 발생되는 고체방사성폐기물드럼을 수용할 수 있다. 고체방사성폐기물은 표준 55갤런 드럼과 고건전성용기에 포장된다. 폐수지는 고 건전성용기에, 슬러지는 표준 55갤런 드럼에 포장하여 반출 전까지 방사성폐기물 건물 내 폐기물 드럼 저장구역에 저장하며 필터취급 부계통으로 이송된 필터카트리지는 배수시킨 후 표준 55갤런 드럼에 포장한다. 또한 압축 가능한 건조 폐기물은 표준 55갤런 드럼에 압축시켜 포장하고, 오염되고 압축이 어려운 대형 기기나장비는 적당한 크기의 운반용기에 넣어 포장한다. 고체방사성폐기물계통은 위의 방사성 물질을 취급하는 운전원이 방사선으로부터 충분히 보호되도록 설계되어 있다.

방사성폐기물 건물 내 폐기물 드럼 저장구역에 폐기물이 많이 저장되어 있거나 발전소운 영 상 반출이 요구될 경우 포장된 폐기물은 건물 밖으로 운반하게 되는데, 이를 위해 방사성폐기물 건물 내 폐기물 드럼 저장구역 근처에 트럭 하치소가 마련되어 있으며 이들 폐기물은 관련법규에 따라 운반 및 저장된다.

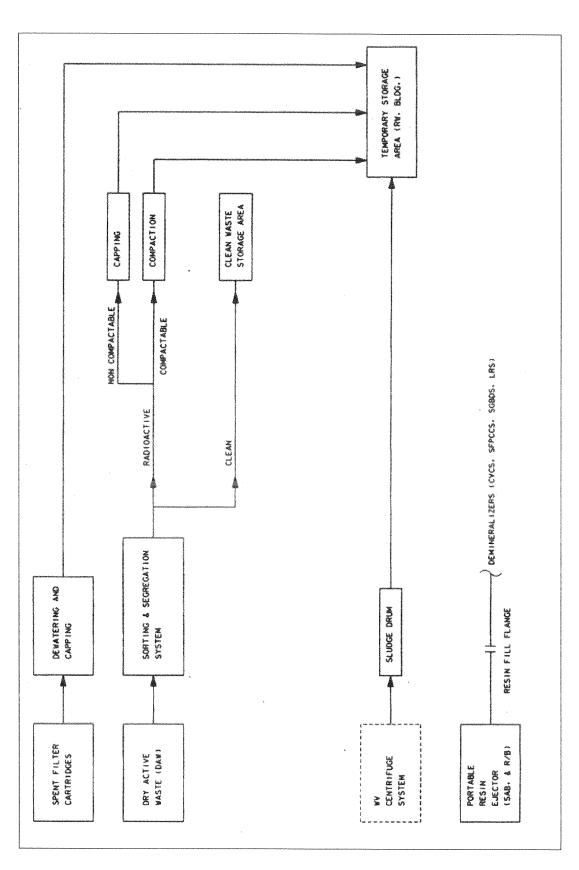


그림 3.4-3 고체방사성폐기물처리계통 흐름도(2/2)

표 3.4-12 고체방사성폐기물처리계통 주요기기 사양

	설 비	<u></u> 설	垮
	고방사능 폐수지탱크	수량(호기당) 형태 용량(m²) 설계압력/온도(psig/°F)	1 수직원통형 13.59 250/150
탱	저방사능 폐수지탱크	수량(호기당) 형태 용량(m²) 설계압력/온도(psig/°F)	1 수직원통형 16.99 150/150
크	폐수지 장기저장탱크	수량(호기당) 형태 용량(m²) 설계압력/온도(psig/°F)	2 수직원통형 112 대기압/150
펌	고방사능 폐수지이송펌프	수량(호기당) 형식 용량(ℓ/min) 토출압력(kg/c㎡)	1 연속공동형 283.9 15.1
<u>27</u>	저방사능 폐수지이송펌프	수량(호기당) 형식 용량(ℓ/min) 토출압력(kg/c㎡)	1 연속공동형 283.9 7.74
0) 5	동식 브릿지크레인	수량 용량(ton) 재질 원격 및 제어방식	1 10 탄소강 원격, CCTV
사용	후여과기 운반용기	수량 무게(ton) 재질	1 7.26 304L 스테인레스강
J.	체폐기물 압축기	수량 용량(kg/㎝) 재질	1 14.9 탄소강
여과	기취급 차폐플러그	수량 무게(ton) 재질	2 4 납
폐기물 분류테이블		수량 형태 측정범위	1 3x6 배열 고감도 플라스틱 신틸레이터 220~2.2x10 ⁵ dpm/100cm
폐기물 분쇄기		수량 형태 모터마력	1 전기구동식 10hp
페	수지건조처리계통	수량 용량(ft³/shift) 재질	1(영광발전소 공용) 100 304/304L 스테인레스강

자료 : 영광원자력 5,6호기 최종안전성분석보고서.

2) 출처별 폐기물 발생 예상량

고체방사성폐기물계통에 유입되는 출처별 폐기물 예상 발생량은 표 3.4-13과 같다.

폐기물 구분	폐기물 입력량 및 출력량(m'/yr)				
州/ 芝 丁正	입력	출 력			
폐여과기	20.28 ²⁾	22.30			
폐수지	55.64	55.64 ³⁾			
슬러지	8.494)	8.49			
기타 건조폐기물	414.0	20.05)			
(압축된 폐기물량 기준)	414.0	69.0 ⁵⁾			
계	498.41	155.43			

- 주1) 영광 3,4호기 최종안전성분석보고서 기준.
- 주2) 액체 방사성폐기물계통에서 여과기를 사용하지 않으므로, 영광 3,4호기를 기준으로 전체 폐여과지의 82%가 1차계통에서 발생한 것으로 가정.
- 주3) 폐수지는 탈수처리 후 고건전성 용기에 포장하는 것으로 가정.
- 주4) 액체방사성폐기물계통의 원심분리기 운전 결과 발생되는 슬러지 폐기물.
- 주5) 건조폐기물 분류처리 설비의 감용비 "2", 초고압압축기 감용비 "3"으로 가정.

3.4.4 유출물의 감시

원자력 발전소에는 정상운전, 예상과도사고 및 가상사고 시 방출되는 방사성 물질을 감시, 기록하고 운전원에게 방출물의 방사능준위에 대한 정보를 제공하는 공정 및 유출물 방사선 감시계통이 설치되어 있다. 따라서 동 계통은 시운전시부터 작동하여 배기격리계통과 액체 방출 격리계통에 입력치를 제공하며, ICRP-60 신권고안에 따른 일반인 선량한도, 미 규제법 10 CFR 100, 그리고 미 규제지침서 1.21의 요건에 맞게 환경으로 방출되는 방사능량을 기록할 수 있도록 설계되어 있다.

가. 유출물의 배출지점

기체방출물은 각 건물의 배기계통과 기체방사성폐기물 방출모관을 통해 환경으로 방출되고, 액체방출물은 방사성폐기물 계통 방출모관을 통해 방출된다(그림 3.4-4).

운전시 예상 가능한 모든 유출물의 유출경로(예, 터빈건물 바닥배수, 종합폐수처리장, 복수탈염설비 재상폐액 등)에 대하여, 터빈건물 바닥배수 계통은 터빈 배수조에 수집된 액체폐기물 처리계통으로 이송하거나 소외로 방출할 수 있도록 설계되어 있다. 즉 터빈건물의액체폐기물 및 복수탈염설비의 재생폐액은 주로 방출수로를 통해 소외로 방출되며, 방출시액체방출물 감시기에 의해 연속적으로 감시된다. 방출시 방사성물질이 검출되면 소외로 방출되던 폐수는 액체방사성폐기물계통의 고용존고형물탱크로 이송되어 처리된다. 이와 같이발전소로부터 방출되는 폐액에 대해서 감시 및 대비설계를 하고 있으며, 표 3.4-18에 제시

되어 있는 CPP 지역썸프의 고경보설정치 이하인 경우 종합폐수처리장으로 방출되도록 되어 있다.

이러한 모든 배출지점에는 방사선 감시계통이 설치되어 그 결과를 보건물리실과 주제어실 또는 폐기물건물 제어실로 보내 자동 또는 수동으로 필요한 조치를 취하게 한다. 이와 같은 감시기들로부터 방사능준위 및 기기상태에 대한 정보를 입수하게 되는데 이중 배출지점과 연관되어 감시되는 지점은 다음과 같다.

- 격납건물 및 비상노심냉각계통 기기실 배기
- 일차 보조건물 배기
- 이차 보조건물 배기/고에너지 배관지역 배기
- 핵연료 건물 공기조화계통 배기
- 저준위 실험실 및 세탁실 배기
- 탈기기 배기
- 복수기 진공 배기
- 방사성폐기물 건물 배기
- 증기 밀봉 배기

나. 감시기기

공정 및 유출물 방사선 감시계통은 기체방사성 감시계통과 액체방사성 감시계통으로 이루 어지며 처리되거나 방출되는 방사성 물질을 감시한다. 이러한 감시기들을 배출구별로 정리 하면 표 3.4-14와 같다.

기체방사성 감시계통의 감시기기는 스키드에 설치된 기체시료 채취기, 현장제어반, 기체시료관, 배수관 및 계기 퍼지관으로 구성되며, 기체시료 채취기에는 방사선 계측기, 기체시료유량조절장치 및 진공펌프 장치가 들어 있다. 감시기의 특성에 따라 기체시료 복귀관 및 기체시료의 유량을 측정하는 계기가 부착되어 있다.

액체방사성 감시계통의 감시기기는 스키드에 설치된 액체시료 채취기, 현장제어반, 액체시료 유입 및 유출관, 배수관, 그랩시료 채취관으로 구성되며 시료채취기에는 방사선 계측기와 유량조절기가 들어 있다. 감시기의 특성에 따라 발전소 냉각수 유입 및 유출관과 액체시료의 유량을 측정하는 계기가 부착되어 있다.

유출물감시기의 경보설정치 및 일부 감시기의 경보설정치 도달시 연동기능은 표 3.4-15~18에 제시되어 있다. 표에 제시된 경고 설정치는 10 CFR 50 부록 I의 소외선량 제한치에 근거하고 있으며 경보설정치는 과기부고시의 일반인 선량한도에 근거하여 가상방출의 발생을 운전원에게 경고하며, 특히 안전관리 유출물 감시기의 경우에 공학적 안전설비를 작동시키기 위한 값으로 결정된다. 경고 표시장치에는 시각(beacon) 및 청각(horn) 경고장치가 있

으며 청각경보장치의 경우 30cm 이격된 지점에서 90dBA 이상의 경고음을 발생할 수 있다. 경보는 각 감시기의 현장제어반에서 발생되며 제어실 및 보건물리실의 컴퓨터에서도 청각경보가 발생된다. 일부 감시기는 자동 연동기능을 구비하고 있지 않으며, 표 3.4-15~18에 제시된 바와 같이 경보기능만 있는 감시기는 경보발생시 운전원의 조치가 필요한 감시기이다. 이들 감시기가 생성하는 안전성 관련 ESFAS(Safety Related ESF Acuation System) 신호는 다음과 같다.

(1) 격납건물 퍼지격리 작동신호(CPISA, Containment Purge Isolation Actuation Signal)

격납건물 내에 있는 4개의 원전연료 취급계통 및 사고 후 고준위(High Range) 구역감시기가 발생시킨다. 격납건물 퍼지계통의 공급관 및 출구관의 격납건물 격리건물 격리밸브를 폐쇄함으로써 격납건물 내에서 일어나는 원전연료 취급사고의 영향을 완화시킨다.

(2) 원전연료건물 비상배기계통 작동신호(FBEVAS, Fuel Building Emergency Ventilation Actuation Signal)

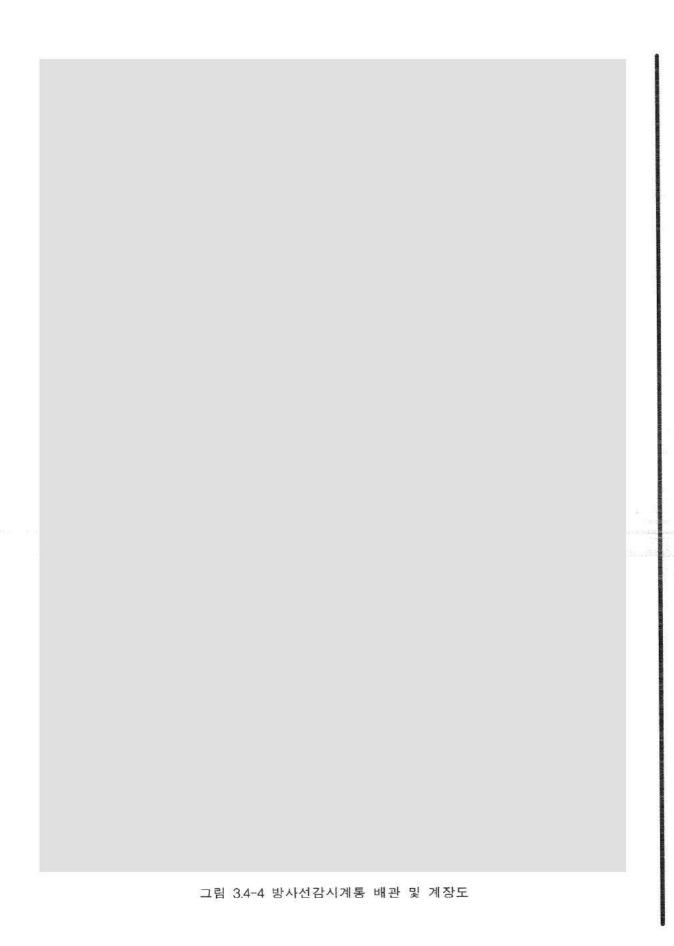

원전연료건물 내에서 FBEVAS는 원전연료 취급사고를 계측하는 사용후연료저장조 지역 감시기가 발생시키며, 원전연료건물 정상배기계통을 격리하고 비상배기계통을 작동시킨다. 원전연료건물 HVAC 방출기체 감시기는 정상가동 시 및 사고 시 원전연료건물 배기를 감시하기 위하여 입자성기체, 요오드, 불활성기체 Channel를 가지고 있다.

표 3.4-14 각 건물별 공정 및 유출물 감시기

기체 공정 및 유출물 감시기

- 일차보조건물 공기조화계통 유출물감시기
- 일차보조건물 배기 공기정화기 입구감시기
- 이차보조건물 및 고에너지 배관지역 공기조화계통 유출물감시기
- 이차보조건물 배기 공기정화기 입구감시기
- 핵연료건물 공기조화계통 유출물감시기
- 격납건물 배기 계통 및 비상노심 냉각계통 기기실 공기조화계통 유출물감시기
- 주제어실 외부공기 흡입구감시기
- 격납건물 공기감시기
- 방사성폐기물건물 공기조화계통 유출물감시기
- 복수기진공펌프 배기유출물감시기
- 증기밀봉배기 유출물감시기
- 기체방사성폐기물계통 배기감시기
- 비상기술지원실 공기흡입구감시기
- 기타 기체공정감시기

자료: 영광원자력 5.6호기 최종안전성분석보고서.

(3) 제어실 비상배기계통 작동신호(CREVAS, Control Room Emergency Ventilation Actuation Signal)

2세트의 안전성 관련 감시기가 방사능 누출사고 이후 주제어실 HVAC 계통으로 유입되는 외부 공기 내 불활성 기체의 존재를 계측한다. 이 감시기는 공기 유입관내의 유입지점에 가능한 근접한 지점에 위치한다. 고방사능이 계측되면 CREVAS가 발생되는데, 이는 정상유입댐퍼를 폐쇄하고 비상 유입댐퍼를 개방하여 유입 공기가 비상 유입공기청정기(ACU, Air Cleaning Unit)를 통과하도록 함으로써 방사성물질의 주제어실내로의 유입을 방지한다.

표 3.4-15 기체방출물 연속감시 적용지점 감시기1)

		감:	 지기 형태 및	측정범위(B	q/cm²)	
감 시 기	수 량	공기입자	요오드	기 체	고경보설정치 (Bq/CC)	작 동 동 작
일차보조건물 배기 공기정화기 입구	144	3.7x10 ⁻⁷ ~3.7x10 ⁻¹	3.7×10^{-7} $\sim 3.7 \times 10^{-1}$	3.7×10^{-2} $\sim 3.7 \times 10^{7}$	공기입자 (1.75E-3) 기체 (1.68E+0) 요오드 (5.50E-2)	- 경보, 일차보조건물 배기공기정화기를 AU 31&AU09에서 AU08&AU10으로 변경
이차보조건물 배기 공기정화기 입구	1	3.7×10^{-7} $\sim 3.7 \times 10^{-1}$	3.7×10^{-7} $\sim 3.7 \times 10^{-1}$	3.7×10^{-2} $\sim 3.7 \times 10^{7}$	공기입자 (2.30E-3) 기체 (2.21E+0) 요오드 (6.66E-2)	- 경보
핵연료건물 공기조화계통 유출물	1	3.7×10^{-7} $\sim 3.7 \times 10^{-1}$	3.7×10^{-7} $\sim 3.7 \times 10^{-1}$	3.7×10^{-2} $\sim 3.7 \times 10^{7}$	공기입자 (3.13E-3) 기체 (2.45E+0) 요오드 (7.40E-2)	- 경보
격납건물 배기 및 비상노심냉각계통 기기실 공기조화계통 유출물	1	3.7×10^{-7} $\sim 3.7 \times 10^{6}$	3.7×10^{-7} $\sim 3.7 \times 10^{6}$	3.7×10^{-2} $\sim 3.7 \times 10^{9}$	공기임자 (3.79E-3) 기체 (1.29E+2) 요오드 (1.34E+0)	- 경보, 격납건물 배기팬정지
주제어실 외부공기 흡입구	4	-		3.7×10^{-2} $\sim 3.7 \times 10^{3}$	기체 (5.72E-1)	- 경보, 주제어실 정상공기조화계통을 차단시키고 주제어실비상 보충 공기계통을 동작시킨다.
격납건물 공기	1	3.7×10^{-5} $\sim 3.7 \times 10^{1}$	3.7x10 ⁻⁵ ~3.7x10 ¹	3.7×10^{-2} $\sim 3.7 \times 10^{5}$	공기입자 (1.27E-4) 기체 (3.11E+1) 요오드 (8.86E-3)	- 경보발생
기체방사성 폐기물계통 배기	1		-	3.7×10^{1} $\sim 3.7 \times 10^{6}$	기체 (4.94E+4)	- 경보
비상기술지원실 공기흡입구	1			3.7×10^{-2} $\sim 3.7 \times 10^{3}$	기체 (5.72E-1)	- 경보, 비상기술지원실 보충 공기정화기 팬 작동

자료: 영광원자력 5,6호기 최종안전성분석보고서.

표 3.4-15 기체방출물 연속감시 적용지점 감시기(계속)

		김	·지기 형태 및	Ļ 측정범위(_/	u Ci/cπ')	
감시기	수 량	공기입자	요오트	기체	고경보설정치 (Bq/CC)	작동동작
방사성폐기물건물 배기 공기정화기 입구	1	3.7×10^{-7} $\sim 3.7 \times 10^{-1}$	3.7×10^{-7} $\sim 3.7 \times 10^{-1}$	3.7×10^{-2} $\sim 3.7 \times 10^{3}$	공기업자 (1.84E-3) 기체 (2.06E+1) 요오드 (7.65E-2)	- 경보, 기체방사성폐기물계통 격리방출밸브를 격리, 방사성폐기물건물 공기정화기를 정상에서 비상공기정화기로 변경
고에너지 배관 지역배기 공기정화기 입구	1	3.7×10^{-7} $\sim 3.7 \times 10^{-1}$	3.7×10^{-7} $\sim 3.7 \times 10^{-1}$	$3.7x10^{-2}$ $\sim 3.7x10^{7}$	공기입자 (6.98E-3) 기체 (6.70E+0) 요오드 (3.02E-1)	- 경보

주1) 감시기 형태와 교정용핵종

공기입자 : Th-232에 의한 β - Scintillator 요오드 : Th-232에 의한 γ - Scintillator 기체 : Sr-90에 의한 β - Scintillator

표 3.4-16 시료채취 적용지점 감시기

		감지기 형태 및 측정범위(Bq/cm)				
감시기	수 량	고리이리	요오드	-1 -il	고경보설정치	작 동 동 작
		공기입자	W.T	기체	(Bq/CC)	
일차보조건물					공기입자	
	1	Complex	Complex		(N/A)	
공기조화계통	1	Sampler	Sampler		요오드	
유출물					(N/A)	
이차보조건물 및						
고에너지					공기입자	
 배관지역	1	Sampler	Sampler	_	(N/A)	wais:
	1	Gampier	Jumpier		요오드	
공기조화계통					(N/A)	
유출물					7 -1 01 -1	
방사성폐기물건물					공기입자	
공기조화계통	1	Sampler	Sampler	_	(N/A)	
		Jampier	2		요오드	
유출물					(N/A)	

자료: 영광원자력 5.6호기 최종안전성분석보고서.

표 3.4-17 연속감시, 시료채취 방법 적용지점 감시기

			측정범위	4 (μ Ci/cπ')		
감 시 기	수 량	공기입자	요오트	기 체	고경보설정치	작 동 동 작
		0 / 1 H / 1		21 AII	(Bq/CC)	
					공기	
-17 A 11-11 -1				2 12-2	(N/A)	
저준위 실험실 및	1	Sampler	Sampler	$3.7 \text{x} 10^{-2}$	요오드	- 경보
세탁실 배기				$\sim 3.7 \text{x} 10^3$	(N/A)	0 ===
					기체	
					(3.38E+0)	
					공기	
				$3.7 \text{x} 10^{-2}$	(N/A)	- 경보, 배출경로를
탈기기 배기	1	Sampler	Sampler		요오트	외기로부터 복수기로
To the state of th			-	$\sim 3.7 \times 10^3$	(N/A)	변경
					기체 (1 500 a)	
					(1.77E+2) 공기	
Wilderstand and the second and the s					(N/A)	
증기 밀봉배기				3.7×10^{-2}	요오트	
유출	1	Sampler	Sampler	$\sim 3.7 \times 10^3$	(N/A)	- 경보
				3.7X10	기체	
- ,					(3.96E+1)	
		-			공기	
					(N/A)	
복수기 진공				$3.7 \text{x} 10^{-2}$	요오드	- 경보, 배출경로를
국구기 선당 	1	Sampler	Sampler	$\sim 3.7 \times 10^3$	(N/A)	외기로부터
					기체	격납용기로 변경
	*****				(7.32E+2)	
		증기			증기	
주증기배관	4	(γ-		Anna	0.01(mSv/hr)	- 경보
	,	Scintillation)			/432(GPD)	O -Lo
					,(50% 507)	

자료 : 영광원자력 5,6호기 최종안전성분석보고서.

표 3.4-18 액체방출물 감시기¹⁾

감 시 기	수 량	측정범위(Bq/c㎡)	<u>고경보설정치</u> (Bg/CC)	작 동 동 작
액체방사성 폐기물 계통유출구	2	$3.7 \times 10^{-2} \sim$ 3.7×10^{3}	1.72E+3	-경보 -방출탱크 밸브자동 폐쇄
기기냉각수펌프 공급모관	2	$3.7 \times 10^{-2} \sim$ 3.7×10^{3}	1.13E+1	-경보
증기발생기 취출배관	1	$3.7 \times 10^{-2} \sim$ 3.7×10^{3}	6.49E+2	-경보 -증기발생기 취출 격리밸브를 격리
CVCS 유출배관	1	$3.7 \times 10^{0} \sim$ 3.7×10^{6}	Variable	-경보
CVCS 탈기기	1	$3.7 \times 10^{0} \sim$ 3.7×10^{5}	Variable	-경보
CPP 지역썸프	James	$3.7 \times 10^{-2} \sim$ 3.7×10^{3}	4.59E-1	-경보
응축수 회수 탱크	1	$3.7 \times 10^{-2} \sim$ 3.7×10^{3}	4.59E-1	-경보 -그랜드밀봉수집 탱크격리밸브를 폐쇄하고 저용존고형물 탱크격리밸브는 개방
증기발생기 취출수 시료배관	2	$3.7 \times 10^{-2} \sim$ 3.7×10^{3}	2.66E+1	-경보 -취출배관 관시료채취관 격리밸브를 격리

자료 : 영광원자력 5,6호기 최종안전성분석보고서.

주1) 감시기 형태와 교정용핵종 : Cs-137에 의한 γ - Scintillator

다. 시료채취

1) 최대허용공기중 및 수중농도

발전소 각 호기로부터 비제한구역으로 방출되는 방사성물질의 최대허용공기중농도 및 수 중농도는 과기부 고시 98-12호의 규정에 따르도록 한다.

2) 선량제한(국민건강 및 환경상의 위해 방지)

원자력법 시행령 제323조의2 제2호에서 규정한 기타 방사선 위해방지를 위하여 해당 시설의 설계에 다음의 과기부고시 2001-2호의 기준을 적용하였다.

가) 기체상태의 방출물에 의한 제한구역 경계에서의 연간선량.

- ① 감마선에 의한 공기의 흡수선량 : 0.1 mGy
- ② 베타선에 의한 공기의 흡수선량: 0.2 mGy
- ③ 외부피폭에 의한 유효선량: 0.05 mSv
- ④ 피부등가선량: 0.15 mSv
- ⑤ 입자상 방사성물질에 의한 인체 장기 등가선량 : 0.15 mSv
- 나) 액체상태의 방출물에 의한 제한구역 경계에서의 연간 선량
- ① 유효선량: 0.03 mSv
- ② 인체 장기 등가선량: 0.1 mSv

원자력법 시행령 제323조의2 제2호 규정의 기타 방사선 위해방지를 위하여 동일부지내의 다수의 운영중인 원자력관계시설 전체에 적용될 기준으로서 제한구역 경계에서의 연간 선량 은 다음과 같다.

- 가) 유효선량: 0.25 mSv
- 나) 갑상선 등가선량: 0.75 mSv

3) 방사성폐기물 시료채취 및 분석계획

- 가) 액체방사성폐기물 시료채취 및 분석계획은 표 3.4-19와 같다.
- 나) 기체방사성폐기물 시료채취 및 분석계획은 표 3.4-20과 같다.

표 3.4-19 액체방사성폐기물 시료채취 및 분석계획

				γ
시료채취 주기	시료채취 장소	시료채취 및 형태	방사능 분석항목	검출하한치(LLD) (Bq/ml)
	액체방사성폐기물계통	매방출전,	주요 감마방출체	1.85E-02
매방출전	감시탱크/세탁배수탱크	그램시료	I-131	3.70E-02
	액체방사성폐기물계통		주요 감마방출체	1.85E-02
	감시탱크	연속, 복합시료	I-131	3.70E-02
주간	복수계통 응축수 저장탱크 (Condensate Storage Tank)	그랩시료	주요 감마방출체	
	액체방사성폐기물계통	그랩시료	용존불활성기체 (감마방출체)	3.70E-01
	감시탱크/세탁배수탱크 (배치방출시)	복합시료	:Н-3	3.70E-01
			총 알파	3.70E-03
월간	액체방사성폐기물계통 감시탱크/세탁배수탱크 (연속방출시)	그랩시료	용존불활성기체 (감마방출체)	3.70E-01
		Helplan	H-3	3.70E-01
		복합시료	총 알파	3.70E-03
분기	액체방사성폐기물계통 감시탱크/세탁배수탱크 (배치방출시)	복합시료	Sr-89 및 Sr-90	1.85E-03
	액체방사성폐기물계통 감시탱크/세탁배수탱크 (연속방출시)	복합시료	Sr-89 및 Sr-90	1.85E-03

표 3.4-20 기체방사성폐기물 시료채취 및 분석계획

시료채취 주기	시료채취 장소	시료채취 및 형태	방사능 분석항목	검출하한치 (LLD) (Bq/nl)
	격납건물대기[격납건물배기감시기(RE-03	매퍼지(Purge)전, 그랩시료	주요 감마방출 체	3.70E+00
매방출전	7)의 그램시료채취기 연결부위(Grab Sample Pot) 및 입자필터(Filter Paper) 및 옥소필터(Charcoal Cartridge)	-활성탄시료 -입자상시료 -불활성기체 시료 -H-3시료	Н-3	3.70E-02
	- - - - - - - - - - - - - - - - - - -	선수 회사리기크	I-131	3.70E-08
	원전연료건물 배기	연속, 활성탄시료	I-133	3.70E-06
주간	방사성폐기물건물 배기 일차보조건물 배기 탈기기 배기 복수기 진공펌프 배기 증기밀봉 배기 고에너지배관격실배기/이차보조건물배기 일차화학실험실/세탁실 배기	연속, 입자상시료	주요 감마방출 체 (I-131 및 기타)	3.70E-07
	격납건물배기/비상노심냉각기기실배기 원전연료건물 배기 방사성폐기물건물 배기	그랩시료 -불활성기체 시료 -H-3 시료	불활성기체 총 베타 또는 감마	3.70E-02
월간	일차보조건물 배기 탈기기 배기 복수기 진공펌프 배기 증기밀봉 배기 고에너지배관격실배기/이차보조건물배기 일차화학실험실/세탁실 배기	연속, 입자상복합시료	총 알파	3.70E-07
분기	격납건물배기/비상노심냉각기기실배기 원전연료건물 배기 방사성폐기물건물 배기 일차보조건물 배기 탈기기 배기 복수기 진공펌프 배기 증기밀봉 배기 고에너지배관격실배기/이차보조건물배기 일차화학실험실/세탁실 배기	연속, 입자상복합시료	Sr-89, Sr-90	3.70E-02

다) 고체방사성폐기물계통

고체방사성폐기물계통은 발전소 정상운전시 간헐적으로 운전된다. 따라서 본 계통은 일반산업체기준에 따라 주기적으로 육안검사 및 예방보수를 실시한다.

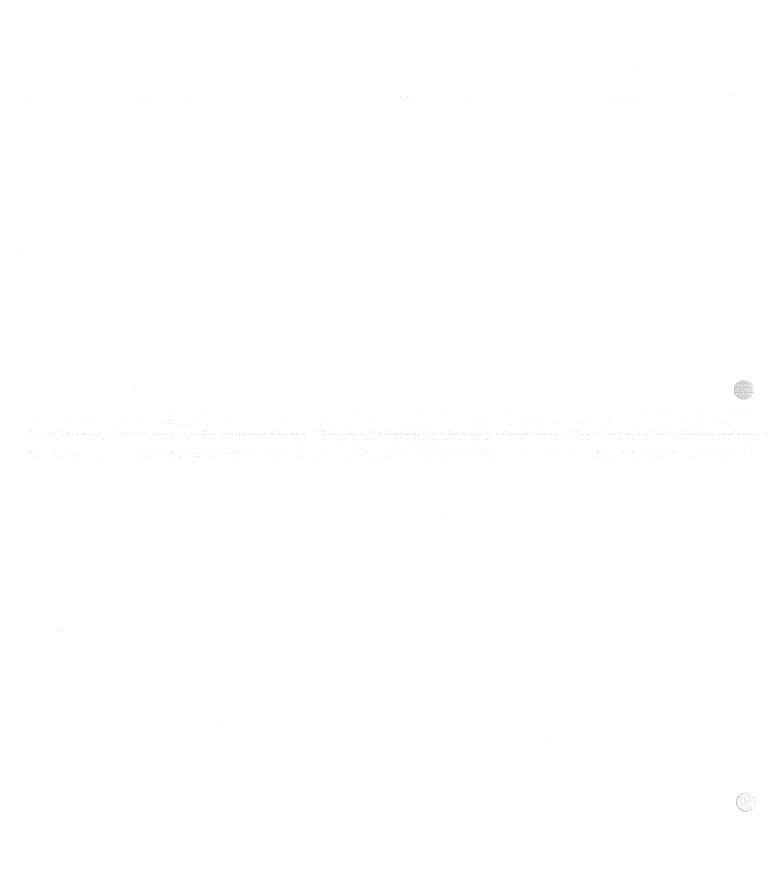

고체방사성폐기물계통 구역은 지역방사선감시기에 의해 감시된다. ALARA 지침에 따라 운전원의 방사선 피폭을 관리하기 위하여 트럭베이, 폐기물드럼 임시저장구역, 폐여과기 포장 구역, 건조폐기물 저장구역 및 폐수지 건조처리설비 설치 위치 등에 지역 방사선 감시기를 설치하여 외부 방사선을 측정하게 된다. 이들 방사선 감시기에 대한 사양은 표 3.4-21에 제시되어 있다.

표 3.4-21 지역방사선 감시계통

설치장소	호기 당수 량	검출 기형 태	내 진 범 주	감시매체	전 원	측정범위 (mSv/hr)	정확도 (% of reading)	경고/고경보 (mSv/hr)	기 능
1차시료채취실 (RE-205)	-	GM	Ш	공기	비 1E급 계측교류	$10^{-3} - 10^2$	±20	0.01 0.1	일차시료채취실 방사선준위 감시
수소 재결합기 지역 (RE-221,222)	2	GM	П	공 기	비 1E급 계측교류	10 ⁻³ -10 ⁵	±20	0.15 1	수소 재결합기 지역 방사선량률 감시
주증기 및 주급수 격납건물 관통 지역 (RE-228,229)	2	GM	econoli econoli	공기	비 1E급 계측교류	10 ⁻³ -10 ² (Sv/hr)	±20	2 ······· 5	주증기 및 주급수 격납건물 관통지역 방사선량률 감시
격납건물 운전지역 (Div.A) (RE-231,232)	2	IC	1	공 기	비 1E급 계측교류	10 ⁻³ -10 ²	±20	0.5 2.5	·정상운전 및 핵연료 취급사고 감시 ·격납건물 배기격리 작동신호 발생
격납건물 상부 운전지역 (Div.B) (RE-233,234)	2	IC)—4	공기	1E급 계측교류	10 ⁻² -10 ⁵ (Sv/hr)	±40	14 28	· 핵연료 취급 및 냉각재 상실 사고 감시 ·격납건물 배기격리 작동신호 발생
노내핵계측기 지역 (RE-235)	y many	IC	П	공기	비 1E급 계측교류	$10^{-3} - 10^2$	±20	0.01 0.1	노내핵계측기지역 방사선량률 감시
격납건물 인원출입구 지역 (RE-236)	1	IC		공기	비 1E급 계측교류	10 ⁻³ -10 ²	±20	0.2	격납건물 인원 출입구 지역 방사선량률 감시

표 3.4-21 지역방사선 감시계통(계속)

설치장소	회 당 량	검출 기형 태	내 진 범 주	감 시 매 체	전 원	측정범위 (mSv/hr)	정확도 (% of reading)	경고/고경보 (mSv/hr)	기능
사용후연료저 장조 지역 (RE-241,242)	2	IC	house	공기	1E급 계측교류	10 ⁻³ -10 ²	±20	0.025 0.25	핵연료건물내 핵연료 취급 사고감시및 핵연료건물 비상배기계통작동
신연료 저장지역 (RE-244)	1	GM	П	용기	비IE급 계측교류	$10^{-3}-10^2$	±20	0.01 0.1	신연료 저장지역 방사선량률 감시
비상기술 지원실 지역 (RE-255)	1	GM	П	공 기	비IE급 계측교류	$10^{-3} - 10^2$	±20	0.002 0.15	비상기술지원실 지역 방사선량률 감시
저준위 실험실 (RE-257)	1	GM	Ш	공 기	비IE급 계측교류	10 ⁻³ -10 ²	±20	0.01 0.1	저준위 실험실 방사선량률 감시
주제어실 지역 (RE-275)	1	GM	П	공 기	비IE급 계측교류	10 ⁻³ -10 ²	±20	0.002 0.15	주제어실 지역 방사선량률 감시
방사성 폐기물건물 건조폐기물 저장지역 (RE-284)	- Second	GM	moral moral	공기	비IE급 계측교류	10 ⁻³ -10 ²	±20	0.05 0.5	방사성폐기물계통 건조폐기물 저장지역 방사선량률 감시
고체 방사성폐기물 트럭 적재지역 (RE-289)	1*	GM	Ш	공 기	비IE급 계측교류	10 ⁻³ -10 ²	±20	0.01 0.1	고체방사성폐기물 트럭적재지역 방사선량률 감시
고체 방사성폐기물 트럭bay지역 (RE-291)	*	GM	Ш	공 기	비IE급 계측교류	10 ⁻³ -10 ²	±20	0.01 0.1	고체방사성폐기물 트럭bay지역 방사선량률 감시
방사성폐기물 드럼저장지역 (RE-292)	*	GM	Ш	공 기	비IE급 계측교류	10-3-103	±20	1 10	방사성 폐기물드럼 저장지역 방사선량률 감시
고방사능기기 공작실지역 (RE-293)	1*	GM	Ш	공 기	비IE급 계측교류	10 ⁻³ -10 ²	±20	0.01 0.1	고방사능기기 공작실 방사선량률 감시
드럼 및 필터 취급실 지역 (RE-297)	1*	GM	Ш	공 기	비IE급 계측교류	$10^{-3} - 10^2$	±20	0.05 0.5	방사성폐기물 드럼 및 필터 취급실지역 방사선량률감시

본 문서는 한국수력원자력(주)이 정보 공개용으로 작성한 문서입니다.

3.5 방사선원

3.5 방사선원

방사선원을 계산하는 목적은 두 가지로, 차폐 등의 설계기준을 결정하기 위한 것과 정상 운전 중 발전소로부터 환경으로 방출되는 양을 결정하기 위한 것으로 구분된다. 전자는 설 계요건 만족 및 ALARA 성취를 위해 매우 보수적인 방법으로 계산되며, 후자는 원전 가동 으로 인한 환경영향을 평가하기 위한 것으로 현실적이고 실제적인 방법으로 계산된다. 본 절에서는 환경영향평가 목적에 부합되는 실제적인 평가방법을 사용하여 원자로냉각재, 원전 연료 재장전수조, 사용후연료저장조 및 2차계통의 방사능농도, 그리고 삼중수소, 방사화생성 물에 대해 평가한다.

3.5.1 방사선 및 방사능의 출처

가. 원자로냉각재의 방사능

정상운전 시 원자로냉각재의 방사능농도는 ANSI/ANS 18.1-1984에 근거하여 영광 5,6호기 설계특성자료를 사용하여 GALE 전산코드로 계산한다. 이 계산에 사용된 변수들의 값은 표 3.5-1에 나타나 있으며 이를 근거로 계산된 냉각재의 방사능농도는 표 3.5-2와 같다.

나. 사용후연료 저장조 및 원전연료 재장전수조의 방사능

사용후연료 저장조의 방사능오염은 이 저장조의 냉각 및 정화계통의 운전으로 처리한다. 원자로 운전정지 후에는 화학 및 체적제어계통의 운전과 자연붕괴로 원자로냉각재의 방사능 이 계속 제거되며 원자로 헤드를 제거함에 따라 원자로냉각재가 원전연료 재장전수와 섞인 다. 이때 재장전기간의 붕괴효과와 정화효과를 고려하여 사용후연료 저장조와 원전연료 재 장전수조 내 방사능량을 알기 위한 분석을 시행한다.

사용후연료 저장조의 방사능량은 방사능을 띤 재장전수에 기인한 것으로 냉각 및 정화계통을 거친 재장전수가 사용후연료 저장수와 섞이게 된다. 방사성 부식물질(Crud)은 원전연료 재장전수조 여과계통으로 처리하며 여과된 물은 원전연료 재장전수조로 되돌려 보낸다. 사용후연료 저장조내의 손상된 원전연료로 인한 오염은 다음과 같은 이유로 고려하지 않는다.

- · 사용후연료의 온도는 가동중인 원전연료에 비해 매우 낮으므로 사용후연료의 갭방사능 이 탈계수가 가동 중보다 매우 낮다.
- · 손상원전연료 탐지기기로 확인된 손상 원전연료집합체는 특수 밀봉용기를 이용하여 저장 한다.

따라서 저장된 사용후연료로 인한 방사능 누출은 최소가 되며, 또 정화계통을 이용하여 누춬되

방사성물질을 처리하므로 손상된 원전연료가 저장조 내 방사능농도에 큰 영향을 미치지 않는다.

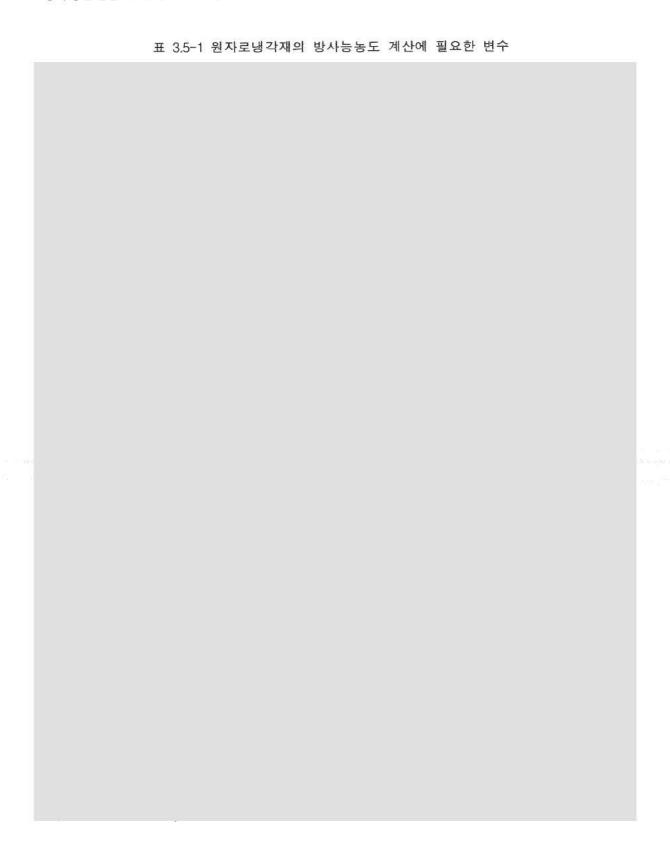


표 3.5-2 정상가동 시 원자로냉각재내의 예상 방사능농도

핵 종	방사능농도	핵 종	방사능농도
떅 중	(Bq/g)	핵 종	(Bq/g)
Kr-85m	6.2E+03	Co-60	1.6E+01
Kr-85	2.3E+04	Zn-65	1.6E+01
Kr-87	5.8E+03	Sr-89	4.4E+00
Kr-88	1.1E+04	Sr-90	3.8E+01
Xe-131m	3.1E+04	Sr-91	3.4E+01
Xe-133m	2.8E+03	Y-91m	1.8E+01
Xe-133	1.1E+05	Y-91	1.6E+01
Xe-135m	5.0E+03	Y-93	1.5E+02
Xe-135	3.3E+04	Zr-95	1.2E+01
Xe-137	1.3E+03	Nb-95	8.8E+00
Xe-138	4.7E+03	Mo-99	2.1E+02
Br-84	6.1E+02	Tc-99m	1.7E+02
I-131	1.4E+03	Ru-103	2.4E+02
I-132	7.8E+03	Ru-106	2.8E+03
I-133	4.7E+03	Ag-110m	4.1E+01
I-134	1.3E+04	Te-129m	6.0E+00
I-135	9.3E+03	Te-129	9.1E+02
Rb-88	7.4E+03	Te-131m	5.0E+01
Cs-134	2.4E+02	Te-131	3.0E+02
Cs-136	3.0E+01	Te-132	5.5E+01
Cs-137	3.2E+02	Ba-140	4.1E+02
N-16	1.5E+06	La-140	8.2E+02
Na-24	1.6E+03	Ce-141	4.7E+00
Cr-51	9.8E+01	Ce-143	9.3E+01
Mn-54	5.0E+01	Ce-144	1.3E+02
Fe-55	3.8E+01	W-187	8.4E+01
Fe-59	9.5E+00	Np-239	7.1E+01
Co-58	1.5E+02	H-3	3.7E+04

자료 : 영광원자력 5,6호기 최종안전성분석보고서.

사용후연료 저장조 내에서의 방사능농도는 원전연료 재장전기간 중에 가장 높을 것으로 예상되므로 본 평가에서는 원자로 운전 정지 후 2일간 화학 및 체적제어계통에서의 이온교환처리와 탈기체 처리를 한 후에 재장전이 시작되는 것으로 가정한다. 상기 수조들에 대한 핵종별 방사능농도는 표 3.5-3에 나타나 있다.

다. 2차계통의 방사능

증기발생기 튜브에 손상이 생기면 원자로냉각재내 방사성물질이 2차계통으로 유입되어 2 차계통이 오염되는데 2차계통의 방사성물질은 다음과 같은 방법으로 제거된다.

- · 증기발생기 취출탈염기를 통한 처리
- · 복수정화탈염기를 통한 처리
- 방사성붕괴
- 주복수기 진공펌프를 통한 배기
- · 주증기의 누설

2차계통의 방사능농도는 ANSI/ANS 18.1을 근거로 한 GALE 코드로 2차계통의 설계변수 (표 3.5-4)를 이용하여 구할 수 있으며, 계산된 방사능농도는 표 3.5-5에 나타나 있다.

표 3.5-3 사용후연료저장조 및 재장전수조의 예상 방사능농도

케 ス	방사능농도	핵 종	방사능농도
핵 종	(Bq/g)	액 궁	(Bq/g)
N-16	0.0E+00	I-131	2.1E+00
Kr-85m	2.7E-02	Te-131m	2.8E-02
Kr-85	5.5E+01	Te-131	1.6E-32
Kr-87	1.4E-09	Te-132	6.2E-02
Kr-88	9.9E-04	I-132	2.3E-05
Xe-131m	6,8E+01	I-133	1.9E+00
Xe-133m	4.2E+00	I-134	1.9E-14
Xe-133	2.1E+02	Cs-134	1.9E+00
Xe-135m	0.0E+00	I-135	1.7E-01
Xe-135	4.3E+00	Cs=136	1.2E-01
Xe-137	0.0E+00	Cs-137	2.7E+00
Xe-138	0.0E+00	Ba-140	6.5E-01
Br-84	1.9E-25	La-140	6.5E-01
Rb-88	0.0E+00	Ce-141	1.0E-02
Sr-89	1.2E-02	Ce-143	6.2E-02
Sr-90	2.9E-03	Ce-144	7.2E-01
Sr-91	2.5E-03	Na-24	3.6E-01
Y-91m	4.5E-17	Cr-51	1.6E-01
Y-91	3.6E-02	Mn-54	1.1E-01
Y-93	1.0E-01	Fe-55	8.0E-02
Zr-95	3.7E-02	Fe-59	1.6E-02
Nb-95	1.9E-02	Co-58	2.5E-01
Tc-99m	1.9E-03	Co-60	3.5E-02
Mo-99	Mo-99 2.2E-01		2.7E+00
Ru-103	Ru-103 5.5E-01		8.9E-02
Ru-106	1.7E+01	W-187	4.0E-02
Ag-110	2.2E-01	Np-239	6.9E-02
Te-129m	1.2E-02	Sb-122	2.7E-02
Te-129	4.1E-12	Sb-124	3.4E-01

자료 : 영광 5,6호기 최종안전성분석보고서.

₩ 3.5-4	증기발생기	2차측의	방사능농도	계산에	필요한	변수	

표 3.5-5 2차측의 액체상 및 기체상에 대한 방사능농도

		붕 괴 상 수	2차 계통내 방사능농도(Bq/g)		
핵 종 구 분	핵 종	(hr-1)	액 체 상	기체 상	
불활성기체	Kr 85m Kr 85 Kr 87 Kr 88 Xe 131m Xe 133m Xe 135 Xe 135 Xe 137 Xe 138	1.55E-1 7.38E-6 5.45E-1 2.45E-1 2.44E-3 1.32E-2 2.51E-3 2.70E+0 7.60E-2 1.09E+1 2.94E+0	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	7.12E-03 1.33E-04 7.37E-03 1.74E-02 1.40E-03 3.93E-04 1.89E-01 5.90E-03 2.70E-02 1.40E-03 5.16E-03	
삼중수소	Н 3	6.44E-6	6.80E+01	6.80E+01	
할로겐	Br 84 I 131 I 132 I 133 I 134 I 135	1.31E+0 3.59E-3 3.01E-1 3.33E-2 7.91E-1 1.05E-1	5.93E-03 1.83E+00 3.91E-01 2.69E+00 1.71E-01 1.49E+00	5.93E-05 1.83E-02 3.91E-03 2.69E-02 1.71E-03 1.49E-02	
Cs, Rb	Rb 88 Cs 134 Cs 136 Cs 137	2.34E+0 3.84E-5 2.19E-3 2.62E-6	3.55E-01 1.79E-01 3.99E-02 2.57E-01	1.77E-03 8.96E-04 2.00E-04 1.28E-03	
	Sr 89 Sr 90 Sr 91 Y 91m Y 91	5.71E-4 2.77E-6 7.30E-2 2.17E-1 4.94E-4	2.45E-03 9.60E-05 3.90E-03 1.77E-03 3.42E-04	1.22E-05 4.53E-07 1.95E-05 8.85E-06 1.71E-06	
기타입자	Y 93 Zr 95 Nb 95 Mo 99 Tc 99m Ru 103 Ru 106 Te 129m Te 129 Te 131m Te 131 Te 132 Ba 137m Ba 140 La 140 Ce 141 Ce 143 Ce 144 Np 239 Cr 51 Mn 54 Fe 55 Fe 59 Co 58 Co 60	6.86E-2 4.51E-4 8.24E-4 1.05E-2 1.15E-1 7.34E-4 7.84E-5 8.60E-4 5.98E-1 2.31E-2 1.66E+0 8.86E-3 1.63E+1 2.26E-3 1.72E-2 8.89E-4 2.10E-2 1.02E-4 1.23E-2 1.04E-3 9.24E-5 2.93E-5 6.47E-4 4.08E-4 1.50E-5	9.17E-05 5.14E-04 3.67E-04 2.21E-01 9.57E-02 1.34E-04 4.65E-05 4.64E-03 2.62E-03 2.23E-02 2.56E-03 1.54E-01 2.57E-01 3.17E-03 9.03E-04 1.15E-04 3.31E-04 2.69E-04 0.00E+00 8.80E-03 1.22E-03 0.00E+00 2.32E-04 5.63E-03 3.92E-04	4.59E-07 2.57E-06 1.83E-06 1.11E-03 4.78E-04 6.72E-07 2.33E-07 2.32E-05 1.31E-05 1.12E-04 1.28E-05 7.71E-04 1.28E-03 1.59E-05 4.51E-06 5.74E-07 1.65E-06 1.35E-06 0.00E+00 4.40E-05 6.12E-06 0.00E+00 1.16E-06 2.81E-05 1.96E-06	

자료 : 영광원자력 5,6호기 최종안전성분석보고서.

라. 삼중수소(Tritium)

가압경수로에서의 삼중수소의 주요 생성원은 삼중핵분열과 냉각재와 제어봉 내에 있는 B, Li, H-2와 중성자의 반응이다. 냉각재내에서 생성된 삼중수소는 냉각재내 삼중수소 농도에 직접 기여하지만 핵연료 펠렛에서 핵분열에 의해 생성된 삼중수소와 제어봉 내에서 중성자와의 반응에 의해 삼중수소는 피복재를 통해 냉각재로 방출되어 냉각재내의 삼중수소 농도에 기여한다.

1) 삼중수소의 방사화 선원

삼중수소를 생성하는 방사화 반응이 표 3.5-6에 제시되어 있는데 그 중 B-11과 N-14 선원에 의한 삼중수소 생성은 반응단면적과 존재량이 작기 때문에 무시될 수 있으며 B-10, Li, H-2의 방사화반응이 냉각재와 제어봉내에서의 주요 삼중수소 생성원이다.

방사화반응에 의한 삼중수소의 생성은 다음 식에 의해 결정된다.

$$\frac{dN}{dt} = \sum_{a} \Phi - \lambda N$$
 $N = \frac{\sum_{a} \Phi}{\lambda} (1 - \exp^{-\lambda t}), \ atoms/cm^{3}$
 $Activity(Bq) = V\lambda N = \sum_{a} (1 - \exp^{-\lambda t}) V$
অস্থান,

 $\sum_{a} \Phi$ = 생성반응률, atoms/cm³-sec

t = 원자로 운전기간,

V = 노심내 냉각재 혹은 제어봉의 부피, cm³

원자로냉각재내 삼중수소의 생성 계산에 이용되는 변수들은 표 3.5-7에 주어져 있으며, 이 변수들을 이용해 계산한 원자로냉각재 내에 생성된 삼중수소의 양은 표 3.5-8에 제시되어 있다.

2) 핵분열에 의한 삼중수소

삼중핵분열에 의한 노심내 삼중수소의 생성은 ORIGEN2 전산코드를 이용하여 계산된다. 영광 5,6호기 FSAR 삼중수소 누설률 자료를 근거로 하여 핵연료봉에서 원자로냉각재로 누설되는 삼중수소의 누설률을 보수적으로 평균 1%, 최대 2%로 가정한다. ORIGEN2 전산코드로 계산한 삼중핵분열에 의해 생성된 노심내의 삼중수소량에 이 누설률을 적용하여 계산한, 원자로냉각재내의 삼중수소량은 표 3,5-8에 제시되어 있다.

3) 2차측계통 삼중수소 농도

2차측계통 삼중수소 농도를 결정하기 위해, 1차측계통으로부터 증기발생기 전열관을 통하여 2차측계통으로 누설된 삼중수소는 2차측계통내 증기 및 액체상의 냉각수로 균일하게 혼합되는 것으로 가정한다. 평형조건하에서의 계산을 위해 2차측계통으로부터의 붕괴 및 누설로 인한 삼중수소 손실량은 1차측계통에서 2차측계통으로의 누설에 의한 삼중수소 유입량과같은 것으로 가정한다. 2차측계통 내에서의 붕괴로 인한 삼중수소 손실량은 삼중수소의 반감기가 길기 때문에 무시한다. 즉, 2차측계통의 삼중수소 농도는 다음 식으로 계산된다.

$$N_s = \frac{R}{L_s} N_w$$

여기서,

 N_w = 1차측 냉각재내 삼중수소 농도

R = 1차측계통으로부터 2차측계통으로의 냉각재 누설량

 L_{s} = 2차측계통 냉각수 누설량

 N_s = 2차측 냉각수내 삼중수소 농도

표 3.5-6 삼중수소 생성의 방사화반응

	문턱에너지(MeV)	반응단면적(<i>cm</i> ²) ¹⁾
$B^{10}(n,2a) T$	1.4	1.20E-26
$Li^{7}(n,n\alpha)$ T	3.9	9.50E-27
$Li^6(n,\alpha) T$	열중성자	9.44E-22
$H^2(n, \gamma) T$	열중성자	5.50E-28
$B^{11}(n, T) Be^9$	10.4	7.30E-30
$N^{14}(n, T) C^{12}$	4.3	3.00E-28

주1) 고속중성자의 반응단면적은 노심내 고속중성자(E > 0.625 eV) 스펙트럼으로 가중 평균하여 계산하였음.

표 3.5-7 삼중수소의 생성 계산에 사용된 변수

자료 : 영광원자력 5,6호기 최종안전성분석보고서.

표 3.5-8 원자로냉각재내 삼중수소의 생성(Bq/cycle)

생 성 원	평 균	최 대
원자로냉각재		
$H^2(n, \gamma) T$	2.0E+11	2.0E+11
$Li^6(n,\alpha) T$	3.8E+12	8.0E+12
$Li^{7}(n,n\alpha) T$	2.4E+11	5.1E+11
$B^{10}(n,2\alpha) T$	1.7E+13	2.0E+13
핵분열생성물	6.5E+12	1.3E+13
제어봉	1.4E+12	7.9E+12
합 계	2.9E+13	4.9E+13

자료: 영광원자력 5,6호기 최종안전성분석보고서.

마. 방사화생성물

1) N-16

N-16은 $O^{16}(n,p)N^{16}$ 반응으로 생성되며, 원자로냉각재펌프, 증기발생기 그리고 원자로냉각재 배관 등 원자로를 제외한 1차계통에서 강력한 방사선원이다. N-16은 β 방출과 이의 78%에 해당하

는 고에너지 γ 방출을 하면서 붕괴하는데 γ 에너지는 73%가 6.13MeV, 5%가 7.10MeV이며, 그 반감기는 7.13초이다. N-16 생성반응의 문턱에너지는 10.2MeV이다. 다음의 수식과 원자로계통 변수에 근거하여 원자로냉각재계통 각 기기에서의 원자로냉각재의 N-16 방사능이 계산된다. 표 3.5-9는 1차냉각재 루프의 여러 지점에서의 전형적인 원자로냉각재내의 N-16 방사능을 나타낸다.

Activity(Bq/cm³) =
$$\frac{\sum \phi(1 - e^{-\lambda t_c}) e^{-\lambda t_r}}{1 - e^{-\lambda t_r}}$$

여기서, $\Sigma \Phi$ = 반응률(5.15 × 10⁷ reaction/cm-sec),

t_c = 냉각재의 노심통과시간(0.74 sec),

t_t = 냉각재가 1차루프를 순환하는 시간(9.74 sec)

 t_r = 냉각재가 유효노심출구에서 대상지점을 통과할 때까지의 시간(sec)

 $\lambda = 붕괴상수(0.097 \text{ sec}^{-1})$

표 3.5-9 원자로냉각재계통내 N-16의 방사능

위 치	Activity(Bq/cm³)
원자로용기 출구 노즐	5.5×10^{6}
원자로용기 출구 고온관(중간점)	5.4×10^{6}
증기발생기(중간점)	en en grafisse en fisse et al en en en graf 450 in Ann 40 en
원자로냉각재펌프(중간점)	$3.1 imes10^6$
원자로용기 입구 저온관(중간점)	3.0×10^{6}

자료: 영광원자력 5,6호기 최종안전성분석보고서.

2) C-14

C-14는 O-17과 N-14 핵종의 중성자에 의한 방사화에 의해 원자로냉각재에 생성된다. C-14 생성의 대부분은 $O^{17}(n,\alpha)C^{14}$ 반응으로 생성되며 $N^{14}(n,p)C^{14}$ 반응에서는 적은 양이 생성된다. 이 두 생성 원으로부터 생성되는 C-14의 생성률(Q Bq/cycle)은 다음 식을 이용하여 계산할 수 있다.

 $Q = \lambda t m N \sigma \Phi$

여기서, λ : 붕괴상수, 1.2×10⁻⁴ yr⁻¹

t : 노심의 운전기간, 292 day

m: 노심내 냉각재 질량, 1.6×10⁷ g

N : 노심내 냉각재에 포함되어 있는 단위질량당 원자수

N(O--17) : 1.3×10^{19} atoms/g $\,H_2O,\,\,N(N\text{--}14)$: 1.3×10^{17} atoms/g $\,H_2O$

 σ : 반응단면적, cm²

 σ (O-17) = 1.5×10⁻²⁵ cm, σ (N-14) = 1.16×10⁻²⁴ cm,

Φ : 열중성자속, 6.6×10¹³ n/cm-s

O¹⁷(n, α)C¹⁴ 반응에 의한 C-14의 생성률은 2.0×10¹¹ Bq/cycle 이며, N¹⁴(n,p)C¹⁴ 반응에 의한 C-14의 생성률은 1.6×10¹⁰ Bq/cycle로 이 두 생성 원으로부터 노심 운전기간동안 생성된 C-14는 2.2×10¹¹ Bq/cycle 이다.

3.5.2 방사능 환경유출

방사성 액체 및 기체를 함유하고 있는 계통에서는 여러 경로를 통해 방사성물질이 환경으로 배출되고 누출될 수 있다. 액체 방사성물질 및 기체 방사성물질의 누출은 액체방사성폐기물처리계통 및 기체 방사성폐기물처리계통에서 각각 설명하였으며, 본 항에서는 폐수지에 대해서만 언급하기로 한다. 탈염기의 폐수지는 고체방사성폐기물처리계통으로 보내지는데이송이 예상되는 폐수지 량은 표 3.5-10에 주어져 있다.

표 3.5-10 예상되는 폐수지량

7. ‡	수 랑	부피	연간수지	총 폐수지
7 분	T 8	(m³)	교체횟수	부피(m')
화학 및 체적제어계통				a de la constante de la consta
정화이온교환기	4	0.91	1	3.64
붕소제거이온교환기	2	0.91	1	1.82
수용전이온교환기	2	0.91	1	1.82
붕산응축수이온교환기	2	0.91	1	1.82
사용후연료저장조	A	1.00	1	7.00
이온교환기	4	1.98	1	7.92
증기발생기취출	4	2.40	10	10.00
이온교환기	4	3.40	1	13.60
액체방사성폐기물계통				
선택성이온교환기	2	1.274	0.5	1.274
양이온교환기	2	1.274	0.5	1.274
음이온교환기	2	1.274	0.5	1.274
정화이온교환기	2	1.274	0.5	1.274

자료: 영광원자력 5.6호기 최종안전성분석보고서.

표 3.5-11 고체방사성폐기물처리계통으로 이송되는 이온교환기의 예상 방사능농도(Bq/g)

핵 종	정 화	붕 소 제 거	수 용 전	붕산응축수	SFPCC
4 0	이온교환기	이온교환기	이온교환기	이온교환기	이온교환기
Ag-110m	3.3E+00	9.2E-07	7.1E-03	2.5E-10	6.84E-04
Ba-137m	2.3E+01	1.8E-04	6.1E-01	1.4E-09	8.17E-03
Ba-140	3.0E+00	6.2E-06	4.2E-03	1.1E-09	1.15E-03
Br-84	8.1E-03	7.4E-05	2.1E-06	5.7E-13	0.00E+00
Ce-141	9.1E-02	1.1E-07	1.6E-04	2.1E-11	2.53E-05
Ce-143	7.4E-02	2.1E-06	5.1E-05	3.0E-11	7.77E-07
Ce-144	1.1E+01	2.8E-06	2.3E-02	7.9E-10	2.21E-03
Co-58	5.6E-01	1.2E-03	1.1E-03	7.7E-11	7.19E-04
Co-60	1.8E-01	1.4E-04	4.0E-04	1.1E-11	1.15E-04
Cr-51	1.6E-01	7.5E-04	2.8E-04	4.0E-11	3.90E-04
Cs-134	1.5E+01	1.4E-04	4.1E-01	1.1E-09	5.69E-03
Cs-136	1.4E-01	1.7E-05	3.5E-03	7.9E-11	2.04E-04
Cs 130	2.3E+01	1.8E-04	6.1E-01	1.4E-09	8.17E-03
Fe-55	3.9E-01	3.2E-04	8.8E-04	2.4E-11	2.54E-04
Fe-59	2.5E-02	7.6E-05	4.7E-05	4.6E-12	4.32E-05
I-131	6.8E+00	3.9E-02	6.4E-03	3.0E-07	2.61E-03
I-132	4.3E-01	3.9E-03	1.2E-04	1.4E-10	2.27E-42
I-132	2.4E+00	2.2E-02	9.1E-04	8.6E-09	9.26E-07
I-134	2.4E+00 2.8E-01	2.5E-03	7.3E-05	3.2E-11	0.00E+00
I-134 I-135	2.5E+00	2.5E-03 1.4E-02	4.5E-04	1.5E-09	4.98E-16
1	7.9E-01	1.4E-02 1.8E-05	5.8E-04	3.3E-10	2.22E-05
La-140	E .		9.8E-04	3.3E-11	3.44E-04
Mn-54	4.5E-01	4.4E-04	9.8E-04 2.8E-04	1.4E-10	3.44E-04 4.60E-17
Mo-99	3.3E-01	4.7E-06		2.2E-10	2.81E-11
Na-24	5.8E-01	3.6E-05 2.0E-07	3.5E-04 3.2E-04	3.9E-11	4.90E-05
Nb-95	1.8E-01	•			4.90E-05 8.60E-06
Np-239	9.6E-02	1.6E-06	7.7E-05	4.0E-11 4.8E-11	0.00E+00
Rb-88	3.2E-02	4.2E-03	7.6E-04	1.1E-09	1.43E-03
Ru-103	5.4E+00	5.3E-06	1.0E-02	4	\$
Ru-106	2.6E+02	6.4E-05	5.7E-01 3.2E-06	1.8E-08	5.34E-02
Sb-122	3.3E-06	3.3E-06	3.2E-06 1.6E-06	7.8E-10 1.3E-09	5.35E-06 9.31E-04
Sb-124	1.7E-06	1.7E-06	2.5E-04	1.3E-09 2.2E-11	9.51E-04 3.03E-05
Sr-89	1.3E-01	1.0E-07	2.5E-04 9.7E-05	2.5E-11 2.5E-12	9.28E-06
Sr-90	4.3E-02	8.3E-09 7.6E-07	9.7E-05 4.6E-06	3.0E-12	3.42E-14
Sr-91	7.9E-03			9.2E-12	3.42E-14 3.81E-07
Tc-99m	2.5E-02	3.8E-06	1.4E-05	9.2E-12 3.9E-12	0.00E+00
Te-129	2.6E-02	2.3E-04	6.8E-06	l .	3.06E-05
Te-129m	1.2E-01	2.3E-04	1.8E-04	1.3E-08	0.00E+00
Te-131	3.0E-03	2.7E-05	7.9E-07	1.7E-13	2.02E-07
Te-131m	3.4E-02	3.1E-04	1.4E-05	1.8E-10 1.8E-09	2.02E-07 1.92E-05
Te-132	1.1E-01	8.8E-04	6.5E-05	(
W-187	4.9E-02	1.9E-06	3.2E-05	4.0E-11	5.91E-08
Y-91	1.8E-07	1.8E-07	1.8E-07	1.4E-10	9.84E-05
Y-91m	2.0E-05	2.0E-05	1.9E-05	7.9E-11	1.90E-44
Y-93	1.7E-04	1.7E-04	1.6E-04	7.5E-09	4.37E-12
Zn-65	1.3E+00	3.7E-07	2.8E-03	1.0E-10	1.25E-05
Zr-95	4.4E-01	2.7E-07	8.7E-04	6.4E-11	1.02E-04

자료 : 영광 5,6호기 최종안전성분석보고서

표 3.5-11 고체방사성폐기물처리계통으로 이송되는 이온교환기의 예상 방사능농도(계속) .

					0 1 0 0(>11 -1)
	선 택 성	양이온	음 이 온	ठ ठा ग्र	증기발생기
핵 종		- '		혼 합 상	취 출
	이온교환기	교환기	교환기	이온교환기	이온교환기
Ag-110	5.43E-09	1.84E-05	5.43E-10	1.84E-06	0.00E+00
Ag-110m	4.17E-07	1.42E-03	4.17E-08	1.42E-04	3.97E-05
Ba-137m	5.81E-02	5.52E-04	1.50E-06	2.38E-06	3.20E-04
Ba-140	4.14E-06	9.82E-03	4.14E-07	9.82E-04	2.03E-04
Br-84	1.37E-06	1.37E-06	1.25E-05	1.03E-07	1.95E-07
Ce-141 Ce-143	4.77E-08 8.68E-07	1.43E-04 3.99E-04	4.77E-09 8.68E-08	1.42E-05 3.99E-05	3.50E-06
Ce-144	1.32E-06	4.51E-03	1.32E-07	4.51E-04	5.98E-06 1.26E-04
Co-58	1.53E-06	4.92E-03	1.53E-07	4.92E-04	1.31E-05
Co-60	1.73E-07	5.99E-04	1.73E-08	5.99E-05	1.71E-06
Cr-51	9.94E-07	2.87E-03	9.94E-08	2.87E-04	6.94E-06
Cs-134	4.63E-02	4.21E-04	1.22E-08	1.22E-08	2.37E-04
Cs-135 Cs-136	0.00E+00 3.97E-03	0.00E+00 3.61E-05	2.86E-10 1.51E-09	2.31E-12 1.51E-09	0.00E+00 1.51E-05
Cs 130	6.21E-02	5.65E-04	1.51E-09 1.63E-08	1.63E-08	3.20E-04
Fe-55	3.87E-07	1.33E-03	3.87E-08	1.33E-04	3.79E-06
Fe-59	9.65E-08	2.99E-04	9.65E-09	2.99E-05	7.65E-07
I-129	2.38E-16	1.97E-13	9.09E-13	2.70E-14	0.00E+00
I-131 I-132	7.03E-05	2.01E-04	1.51E-01	1.23E-03	4.85E-04
I-132 I-133	1.34E-04 2.09E-04	6.95E-04 2.09E-04	4.86E-03 6.73E-02	9.56E-05 5.44E-04	3.32E-05 1.81E-04
I-134	6.55E-05	6.55E-05	9.33E-04	7.67E-06	9.48E-06
I-135	3.14E-04	3.14E-04	3.25E-02	2.63E-04	1.02E-04
La-140	8.06E-06	1.31E-02	8.06E-07	1.31E-03	6.48E-05
Mn-54	5.09E-07	1.73E-03	5.09E-08	1.73E-04	4.88E-06
Mo-99 Na-24	2.05E-06 1.35E-05	1.86E-03 2.83E-03	2.05E-07 1.35E-06	1.86E-04 2.83E-04	2.75E-05
Nb-93m	4.19E-21	4.16E-12	4.19E-22	4.16E-13	3.02E-05 0.00E+00
Nb-95	8.97E-08	3.23E-04	8.97E-09	3.23E-05	6.68E-06
Nb-95m	7.71E-11	5.35E-06	7.71E-12	5.35E-07	0.00E+00
Np-239	1.84E-11	1.43E-08	1.84E-12	1.43E-09	7.91E-06
Pr=143 Pr=144	2.41E-08 1.87E06	1.92E-04 4.50E-03	2.41E-08 1.87E-06	1.92E-05 4.52E-04	0.00E+00 0.00E+00
Rb-88	3.24E05	3.00E-07	5.86E-09	5.86E-09	7.99E-07
Rh-103m	4.34E-06	7.41E-03	4.34E-06	7.44E-04	0.00E+00
Rh-106	2.89E-05	9.75E-02	2.89E-05	9.77E-03	0.00E+00
Ru-103	2.44E-06 2.85E-05	7.43E-03	2.44E-07	7.43E-04	1.88E-04
Ru-106 Sr-89	2.85E-05 4.47E-08	9.75E-02 1.40E-04	2.85E-06 4.47E-09	9.75E-03 1.40E-05	2.75E-03 3.63E-06
Sr-90	3.87E-09	1.34E-05	3.87E-10	1.43E-06	3.83E-07
Sr-91	2.59E-07	3.51E-05	2.59E-08	3.51E-06	5.78E-07
Tc-99	3.16E-15	2.15E-10	3.16E-16	2.15E-11	0.00E+00
Tc-99m	1.76E-06	1.77E-03	1.76E-07	1.77E-04	1.72E-06
Te-129 Te-129m	1.42E-06 6.09E-08	1.40E-04 1.82E-04	1.42E-07 6.09E-09	1.40E-05 1.82E-05	1.04E-06 4.50E-06
Te-131	1.70E-07	3.58E-05	1.70E-08	3.58E-06	6.45E-08
Te-131m	4.63E-07	1.93E-04	4.63E-08	1.93E-05	2.91E-06
Te-132	5.40E-07	5.62E-04	5.40E-08	5.62E-05	8.55E-06
W-187	7.59E-07	2.53E-04	7.59E-08	2.53E-05	3.85E-06
Y-89m Y-90	4.47E-12 1.71E-10	1.41E-08 1.02E-05	4.47E-13 1.71E-11	1.41E-09 1.02E-06	0.00E+00 0.00E+00
Y-91	2.23E-09	1.02E 05 1.28E-05	2.23E-10	1.02E-06 1.28E-06	1.36E-07
Y-91m	1.63E-07	2.25E-05	1.63E-08	2.25E-06	8.40E-08
Y-93	1.16E-06	1.66E-04	1.16E-07	1.66E-05	2.73E-06
Zn-65	1.63E-07	5.53E-04	1.63E-08	5.53E-05	1.86E-07
Zr-93 Zr-95	2.85E-16 1.22E-07	3.99E-12 3.91E-04	2.85E-17 1.22E-08	3.99E-13	0.00E+00
LL 30	1.44C-01	J.31E-04	1.44E-08	3.91E-05	1.03E-06

자료 : 영광 5,6호기 최종안전성분석보고서

. 3.5.3 기체상 방사선원

영광 5,6호기로부터 연간 방출되는 불활성기체 및 입자성핵종에 대한 예상방출량은 PWR-GALE 전산프로그램을 사용하여 계산하며, 계산결과와 방출농도는 표 3.5-12와 같다. 또한, 각 배기구별 위치, 고도, 방출량, 방출온도는 표 3.5-13과 같다.

울진 3,4호기 설계가 노심과 냉각재계통의 기본적인 유사점 때문에 영광 5,6호기의 비교 대상으로 선정하였으며, 표 3.5-14에는 울진 3,4호기의 1998년 1년 동안 운전실적을 분석한 연간 평균 배출량을 나타내었다.

표 3.5-12 기체방사성폐기물처리계통에서 연간 방출되는 방사능량 및 방출농도

(단위 : TBq/yr^{주1)}, TBq/m³^{주2)})

핵 종	방출량 ^{주1)}	방출농도 ^{주2)}	핵 종	방출량 ^{주1)}	방출농도 ^{주2)}
H-3	9.25E+00	1.08E-12	CR-51	6.65E-06	7.73E-19
C-14	2.70E-01	3.14E-14	MN-54	3.70E-06	4.30E-19
XE-131M	4.81E+01	5.59E-12	FE-59	1.89E-06	2.20E-19
XE-133	1.59E+02	1.85E-11	CO-57	5.55E-05	6.45E-18
XE-133M	3.52E+00	4.09E-13	CO-58	2.55E-05	2.96E-18
XE-135	1.85E+01	2.15E-12	CO-60	5.20E-06	6.04E-19
XE-135M	2.59E+00	3.01E-13	SR-89	1.00E-05	1.16E-18
XE-138-	2.22E-01	2.58E-14	SR-90	4.07E-06	4.73E-19
KR-85	7.75E+01	9.01E-12	ZR-95	3.70E-07	4.30E-20
KR-85M	2.11E+00	2.45E-13	NB-95	2.11E-06	2.45E-19
KR-87	7.75E-01	9.01E-14	RU-103	1.15E-06	1.34E-19
KR-88	2.55E+00	2.96E-13	RU-106	2.89E-08	3.36E-21
AR-41	1.26E+00	1.46E-13	SB-125	2.26E-08	2.63E-21
I-131	3.03E-03	3.52E-16	CS-134	2.55E-06	2.96E-19
I-132	1.70E-02	1.98E-15	CS-136	2.22E-06	2.58E-19
I-133	1.04E-02	1.21E-15	CS-137	4.18E-06	4.86E-19
I-134	2.85E-02	3.31E-15	BA-140	1.55E-07	1.80E-20
I-135	2.00E-02	2.32E-15	CE-141	8.90E-07	1.03E-19

주1) 1개 호기를 기준으로 하여 GALE 전산코드로 계산된 자료임.

주2) 방출농도 = Qi(방출핵종) × X/Q(방사능붕괴 및 Plume 감쇄 고려않음, sec/m³)

표 3.5-13 각 배기구별 위치, 고도, 방출량, 방출온도

				Y	
배 기 구	배기구 위치	27	도	방 출 량	방출온도
Containment Purge & ECCS Equipment Room Divisional Exhaust Point		,		47,000 cfm (High Vol. Purge) 1,500 cfm (Low Vol. Purge) 6,000 cfm (Emergency)	(High Vol)
Primary Aux Bldg Exhaust Point				20,000 cfm	57-111 °F(Normal) 65-119 °F(Emergency)
Secondary Aux Bldg/High Energy Line Boundary Point				40,340 cfm	63-117 °F
Fuel Bldg Exhaust Point				27,300 cfm (Normal) 5,000 cfm (Emergency)	51-107 °F(Normal) 62-138 °F(Emergency)
Laboratory/Laundary Exhaust Point				19,800 cfm	70-76 °F
Deaerator Vent				782 cfm	212 °F
Condenser Vacuum Vent				6,800 cfm	122 °F
Radwaste Bldg Exhaust Point				52,800 cfm	50-113 °F(Normal) 58-122 °F(Emergency)
Steam Packing Exhaust Point				1,650 cfm	188 °F

자료 : 영광원자력 5,6호기 최종안전성분석보고서.

표 3.5-14 울진 3,4호기 기체방사성폐기물처리계통에서 연간 방출되는 방사능량¹⁾

(단위 : TBq/yr)

핵 종	방 출 량	핵 중	방 출 량
I 131	1.60E-05	Cr 51	1.15E-06
I 132	7.48E-05	Mn 54	4.98E-07
I 133	9.28E-05	Co 57	0.00E+00
I 134	2.90E-05	Co 58	4.96E-06
I 135	5.55E-07	Co 60	3.70E-07
Н 3	3.44E+00	Fe 59	1.27E-08
C 14	0.00E+00	Br 82	2.55E-08
Ar 41	2.89E-02	Sr 89	0.00E+00
Kr 85m	2.58E-04	Sr 90	2.95E-09
Kr 85	1.11E-03	Zr 95	1.04E-06
Kr 87	5.38E-04	Nb 95	1.48E-06
Kr 88	3.59E-04	Ru 103	0.00E+00
Xe 131m	0.00E+00	Ru 106	0.00E+00
Xe 133m	0.00E+00	Sb 125	0.00E+00
Xe 133	1.42E-02	Cs 134	0.00E+00
Xe 135m	7.89E-03	Cs 136	0.00E+00
Xe 135	5.32E-03	Cs 137	0.00E+00
Xe 137	0.00E+00	Ba 140	0.00E+00
Xe 138	1.35E-03	Ce 141	0.00E+00

주1) 기체방사성폐기물처리계통으로 방출된 실제 방출량, 1998.

3.5.4 액체상 방사선원

정상운전 시 발전소로부터 소외로 방출되는 액체방류물 내 함유되어 있는 방사성핵종의 연평균 예상방출량은 PWR-GALE 전산프로그램을 사용하여 계산하며, 계산결과는 표 3.5-15와 같다. 표 3.5-16에는 울진 3,4호기의 1998년 1년 동안 운전실적을 분석한 연간 평 균 배출량을 나타내었다.

표 3.5-15 액체방사성폐기물처리계통에서 연간 방출되는 방사능량 및 방출농도 (단위 : TBq/yr^{주1)}, TBq/m³^{주2)})

핵 종	방출량 ^{주1)}	방출농도 ^{주2)}	핵 종	방출량 ^{주1)}	방출농도 ^{주2)}
H-3	3.22E+01	1.88E-08	AG-110	7.40E-06	4.32E-15
NA-24	2.04E-04	1.19E-13	AG-110M	1.00E-04	5.84E-14
P-32	7.20E-06	4.20E-15	SB-124	1.59E-05	9.29E-15
CR-51	2.96E-04	1.73E-13	TE-129M	7.40E-06	4.32E-15
MN-54	2.11E-04	1.23E-13	TE-129	8.90E-06	5.20E-15
FE-55	3.18E-04	1.86E-13	TE-131	2.59E-06	1.51E-15
FE-59	3.18E-04	1.86E-13	TE-131M	1.30E-05	7.59E-15
CO-58	4.81E-04	2.81E-13	TE-132	3.11E-05	1.82E-14
CO-60	5.55E-04	3.24E-13	I-131	3.03E-03	1.77E-12
NI-63	6.30E-05	3.68E-14	I-132	3.22E-04	1.88E-13
ZN-65	2.22E-05	1.30E-14	I-133	2.29E-03	1.34E-12
BR-84	2.52E-06	1.47E-15	I-134	1.18E-04	6.89E-14
RB-88	4.44E-06	2.59E-15	I-135	1.30E-03	7.59E-13
SR-89	8.90E-06	5.20E-15	CS-134	7.75E-04	4.53E-13
SR-90	1.00E-06	5.84E-16	CS-136	4.81E-05	2.81E-14
SR-91	2.63E-06	1.54E-15	CS-137	1.07E-03	6.25E-13
Y-91M	1.63E-06	9.52E-16	BA-137M	4.44E-04	2.59E-13
Y-91	3.63E-06	2.12E-15	BA-140	4.44E-04	2.59E-13
Y-93	1.18E-05	6.89E-15	LA-140	6.30E-04	3.68E-13
ZR-95	5.55E-05	3.24E-14	CE-141	1.44E-05	8.41E-15
NB-95	8.15E-05	4.76E-14	CE-143	2.63E-05	1.54E-14
MO-99	1.11E-04	6.48E-14	CE-144	3.15E-06	1.84E-15
TC-99M	1.04E-04	6.07E-14	PR-143	8.15E-06	4.76E-15
RU-103	3.11E-04	1.82E-13	PR-144	1.70E-04	9.93E-14
RU-106	4.44E-03	2.59E-12	W-187	1.74E-05	1.02E-14
RH-103M	3.03E-04	1.77E-13	NP-239	3.26E-05	1.90E-14
RH-106	4.07E-03	2.38E-12			

주1) 1개 호기를 기준으로 하여 GALE 전산코드로 계산된 자료임.

주2) 방출농도 = Qi ÷ 희석수량(1개 호기 기준, 54.3 m²/sec)

표 3.5-16 울진 3,4호기 액체방사성폐기물처리계통에서 연간 방출되는 방사능량¹⁾

(단위: TBq/yr)

핵 종	방 출 량	핵 종	방 출 량
Na 24	0.00E+00	Rh 106	0.00E+00
P 32	0.00E+00	Ag 110m	LLD 미만
Cr 51	LLD 미만	Ag 110	0.00E+00
Mn 54	LLD 미만	Sb 124	LLD 미만
Fe 55	0.00E+00	Te 129m	0.00E+00
Fe 59	0.00E+00	Te 129	0.00E+00
Co 58	LLD 미만	Te 131m	0.00E+00
Co 60	LLD 미만	Te 131	0.00E+00
Ni 63	0.00E+00	I 131	0.00E+00
Zn 65	0.00E+00	Te 132	0.00E+00
W 187	0.00E+00	I 132	LLD 미만
Np 239	0.00E+00	I 133	LLD 미만
Br 84	0.00E+00	I 134	0.00E+00
Rb 88	0.00E+00	Cs 134	0.00E+00
Sr 89	LLD 미만	I 135	0.00E+00
Sr 90	LLD 미만	Cs 136	0.00E+00
Sr 91	0.00E+00	Cs 137	0.00E+00
Y 91m	0.00E+00	Ba 137m	0.00E+00
Y 91	0.00E+00	Ba 140	0.00E+00
Y 93	0.00E+00	La 140	0.00E+00
Zr 95	LLD 미만	Ce 141	0.00E+00
Nb 95	LLD 미만	Ce 143	0.00E+00
Mo 99	0.00E+00	Pr 143	0.00E+00
Tc 99m	0.00E+00	Ce 144	0.00E+00
Ru 103	0.00E+00	Pr 144	0.00E+00
Rh 103m	0.00E+00	Н 3	4.04E+01
Ru 106	0.00E+00		

주1) 액체방사성폐기물처리계통으로 방출된 실제 방출량, 1998.

4. 건설로 인한 영향

4. 건설로 인한 영향

발전소 건설시의 방사능에 의한 영향은 동일부지 내에서 가동중인 발전소로부터 전설 작업자가 작업 중 받는 피폭선량 (개인 및 총 작업자선량)으로 평가된다. 건설 작업자가 작업시 받는 피폭선량은 크게 가동 중 발전소로부터 방출되는 기체상 방사성물질에 의한 피폭선량, 지표면에 침적된 방사능으로부터의 선량, 발전소로부터의 직접선량으로 나누어진다.

영광 5,6호기는 동일 부지 내 1년 차이로 건설되기 때문에 방사능운 및 지표면 침적에 의한 선량 계산 시에는 처음 4년의 건설기간동안은 영광 1,2,3,4호기에 의한 영광 5,6호기 건설 작업자들에 대한 방사능 영향이 고려되고, 영광 6호기가 상업운전을 하게되는 건설 마지막해에는 영광 1,2,3,4호기 및 영광 5호기로부터 영광 6호기의 건설 작업자에 대한 방사능 영향이 고려된다.

또한 발전소로부터의 직접선량 계산 시에는 영광 6호기가 건설중인 처음 4년의 건설기간 동안은 영광 1,2,3,4호기에 의한 영광 5,6호기 건설작업자들에 대한 방사능영향이 고려되지만 이들 호기들이 동일 방향의 일직선 배치이므로 영광 1,2,3호기에 의한 방사능 영향은 영광 4호기 구조물에 의한 차폐로 무시할 수 있다. 영광 5호기가 상업운전 하게되는 건설 마지막해에는 영광 5호기로부터 영광 6호기의 건설작업장에 대한 방사능 영향만이 고려된다.

본 절에서는 건설 작업자들에 대한 피폭선량의 정량적 계산 모델과 가정을 기술하고 이에 따른 계산 결과가 과학기술부 고시 98-12호 제4조의 일반인에 대한 연간 유효선량한도 (1mSv/yr)를 만족하는지를 평가한다.

4.1 선량 계산모델

가. 방사능운에 의한 선량계산

방사능운으로부터 건설작업자가 받는 선량은 유효선량, 피부선량 및 호흡으로 인한 갑상 선 선량 등이며 선량계산 시 사용되는 모델은 미 규제지침서(USNRC Regulatory Guide) 1.109를 사용하였고, 선량전환인자는 ICRP-60에 근거한 자료를 사용하였다.

유효선량의 계산식은 아래와 같다.

$$D_{\infty}^{T}(r,\theta) = S_{F} \sum_{i} X_{i}(r,\theta) DF B_{i}$$

$$(4.1.1)$$

여기서, DFB_i = 5cm 깊이의 인체조직에 의한 방사선감쇠를 고려한 방사성 핵종 i의 유 효선량인자, mSv-m³ /Bq-yr

 $D^{T}_{\infty}(r, heta)$ = 방출지점으로부터 각heta,거리 r에 있는 개인이 방사능운으로부터 받

는 연간 총 유효선량, mSv/yr

 $X_i(\mathbf{r},\theta)$ = 방출지점으로부터 각 θ , 거리 \mathbf{r} 에서 방사성핵종 \mathbf{i} 의 평균 대기중 농도, $\mathbf{B}\mathbf{q}/\mathbf{m}'$

S_F = 건물에 의한 방호 인자

그리고
$$X_i(r,\theta) = 3.17 \times 10^4 \ Q_i(X/Q)^D$$
 (4.1.2)

여기서, Qi = 방사성핵종 i의 연간 방출량, TBq/yr

 3.17×10^4 = 단위환산인자, Bq-yr/TBq-sec

 $(X/Q)^D$ = 방사능 붕괴를 고려한 대기확산인자, \sec/m^2

따라서 (4.1.1)식을 (4.1.2)식에 대입하면 유효선량 계산식은 다음과 같이 정리된다.

$$D \stackrel{T}{\approx} = 3.17 \times 10^{4} S_{F} \sum_{i} DF B_{i} (X/Q)^{D} Q_{i}$$
 (4.1.3)

피부선량 계산식은 아래와 같다.

$$D \stackrel{S}{\approx} = 3.17 \times 10^{4} \sum_{i} (1.11 \ S_{F}DF \ \gamma_{i} + DF \ S_{i}) \ (X/Q)^{D} \ Q_{i}$$
 (4.1.4)

여기서, DFS_i = 피부의 각질층에 의한 방사선감쇠를 고려한 방사성 핵종 i의 피부선량인 자, mSv-m¹/Bq-yr

 $D^{s}_{\infty}(r, \theta)$ = 방출지점으로부터 각 θ ,거리 r에 있는 개인이 방사능운으로부터 받는 연간 피부선량, mSv/yr

DF γ; = γ선에 의한 공기선량인자, mGy-m'/Bq-yr

 $1.11 = \gamma$ 선에 대한 공기와 인체조직의 에너지 흡수계수의 비율, mSv/mGy 나머지 변수들의 설명은 (4.1.1)식과 (4.1.2)식의 사항과 동일하다. 호흡 갑상선량 계산식은 아래와 같다.

$$D^{Th}(r,\theta) = 3.17 \times 10^{4} \sum_{i} DF A_{i} (X/Q)^{DD} Q_{i}$$
 (4.1.5)

여기서, DFA; = 방사성핵종 i의 성인갑상선에 대한 호흡선량인자, mSv/Bq

 $D^{Th}(r,\theta)$ = 모든 방사성핵종의 호흡으로 인한 (r,θ) 지점에 있는 성인의 갑상선에 대한 연간 갑상선량, mSv/yr

R = 성인의 연간 개인호흡량, m¹/yr

(X/Q)^{DD} = 방사능 붕괴와 지표면 침적을 고려한 대기확산인자, sec/m²이고, 나머지 변수들의 설명은 식 (4.1.1)과 식 (4.1.2)의 사항과 동일하다.

나, 지표면에 침적된 방사능으로부터의 계산

건설작업자는 지표면에 침적된 방사능으로부터 전신과 피부가 피폭된다. 선량계산모델은 미 규제지침서 1.109에 제시된 식을 사용하였고, 장기별 선량 가중치 및 유효선량 계산은

ICRP-72를 근거로 사용하였다. 지표면에 침적된 방사성물질로부터의 피폭선량은 다음과 같이 계산한다.

$$D_{j}^{G}(r,\theta) = 8,760 S_{F} \sum_{i} C_{i}^{G}(r,\theta) DFG_{ij}$$
 (4.1.6)

여기서, $C_i^G(r,\theta)$ = 방출지점으로부터 각 θ , 거리 r에서의 방사성 핵종 i의 지표면 농 도, $\mathrm{Bq/m^2}$

DFGij = 방사성핵종 i에 대한 장기 j의 선량인자, mSv/-m'/Bq-hr

 $C_i^G(r, heta)$ = 방출지점으로부터 각 heta, 거리 r의 지표면에 침적된 모든 방사능으로부터 장기 j가 받는 연간 선량, mSv/yr

8,760 = 단위환산인자, hr/yr

S_F의 설명은 (4.1.1)식의 사항과 동일하다. 그리고,

$$C_{i}^{G}(r,\theta) = \frac{1.0 \times 10^{12} (D/Q) Q_{i}}{\lambda_{i}} (1 - \exp(-\lambda_{i} t))$$
(4.1.7)

여기서, Qi = 대기로 방출되는 방사성핵종 i의 연간 방출량, TBq/yr

t = 지표면의 오염기간, 통상 발전소수명의 반(20 yr)

 λ_i = 방사성핵종 i의 붕괴상수, yr^{-1}

 $(D/Q) = 지표면 침적인자, <math>m^{-2}$

 1.0×10^{12} = 단위환산인자, Bq/TBq

다. 발전소로부터의 직접선량

건설작업자가 가동중인 발전소로부터 직접 받는 조직의 선량은 다음과 같이 계산된다.

$$D^{T} = (5.76 \times 10^{-4}) \left(\frac{\mu_{a}}{\rho}\right) B \Phi \tag{4.1.8}$$

여기서, D^T = 발전소로부터 직접 받는 조직선량, mSv/hr

$$\frac{\mu_a}{
ho}$$
 = 에너지 흡수질량 감쇠계수, c㎡/g
$$(1~{\rm MeV}~\gamma~{\rm td} {\rm d} {\rm He} {\rm Te} {\rm te}$$

B = 조직의 누적계수

 Φ = 작업지점에서의 γ 에너지 선속, MeV/cm²-sec

 5.76×10^{-4} = 선량율 환산인자, mSv-g-sec/hr-MeV

그리고 누적계수 B는 Berger 방정식으로 계산된다.

$$B(E, \mu r) = 1 + C \mu r \exp(\beta \mu r)$$
 (4.1.9)

여기서, μ = 대기 중에서 γ 선 감쇠계수, cm^{-1}

r = 격납건물로부터 작업자까지의 거리, cm

C, β = Berger 상수

또한 식(4.1.8)의 선속 ϕ 는 격납건물 내 방사선원을 면선원(Surface Source)으로 가정하고 격납건물 벽에 의한 차폐효과를 고려하면 다음과 같이 계산된다.

$$\boldsymbol{\Phi} = \frac{S_A R}{(R+r)} F(\theta, \mu r) \tag{4.1.10}$$

$$\theta = \tan^{-1} \left[\frac{H}{2(R+r)} \right] \tag{4.1.11}$$

여기서, S_A = 격납건물의 표면 선원강도, $\mathrm{MeV/cm-sec}$

R = 격납건물 반경, cm

H = 격납건물 높이, cm

이고, $F(\theta, \mu r)$ 는 Sievert 적분함수로서 다음과 같다.

$$F(\theta, \mu r) = \int \exp(-\mu r \sec \theta') d\theta'$$
 (4.1.12)

한편, S_A 의 계산은 아래와 같다.

$$S_A = 2 \, \mathbf{\Phi}_s \tag{4.1.13}$$

 $m{\phi}_{s}$ 는 격납건물 표면에서의 γ 선속으로서 식 (4.1.8)을 이용하여 구하면 다음과 같다.

$$\Phi_s = \frac{D_s}{(5.76 \times 10^{-4})(\mu_s/\rho)} \tag{4.1.14}$$

여기서, D_s 는 격납건물 표면에서의 유효 선량율(mSv/hr)이며 (μ_a/ρ), 5.76×10^{-4} 에 대한 설명은 식 (4.1.8)의 사항과 동일하다.

식 (4.1.10), (4.1.13), (4.1.14)를 이용하여 식 (4.1.8)을 정리하면 다음과 같다.

$$D^{T} = \frac{2D_{s}R}{(R+r)}BF(\theta, \mu r) \tag{4.1.15}$$

위 식으로부터 직접선량을 계산할 수 있으며, 여기서 B와 $F(\theta, \mu r)$ 는 각각 식 (4.1.9)와 식 (4.1.12)로부터 구할 수 있다.

4.2 선량 계산 시 가정

영광 5.6호기의 건설업자가 건설기간동안 받는 최대개인 및 집단피폭선량을 계산하는데

사용된 가정은 다음과 같다.

- 가) 총 건설기간은 기초콘크리트 타설부터 핵연료장전까지 5년이다. 영광 5,6호기 건설 개시 시점에 영광 1,2,3,4호기 모두 운전되며, 특히, 영광 6호기 건설 마지막 해 1년간은 영광 5호기가 운전된다.
- 나) 각 발전소에 고용될 연간 작업자의 수는 표 4.2-1과 같다.
- 다) 건설업자의 연간 작업 시간은 2.000시간이다(40시간/주, 50주/년).
- 라) 방사능운에 의한 선량계산 시 건설작업자는 영광 5,6호기 격납 사이에 위치하는 것으로 가정한다. 건설기간 동안 방사성물질 방출원으로부터 작업자까지의 거리는 표 4.2-2와 같다.
- 마) 기체 방사성 물질의 방출은 보수적인 계산을 위해 건물 와류효과를 고려한 지표면 방출 로 가정한다.
- 바) 피폭지점에서 건설업자의 음식물 섭취로 인한 선량은 무시한다.
- 사) 직접선량계산 시 영광 5,6호기 건설작업자가 영광 1,2,3호기로부터 받는 직접선량은 영광 4호기에 의해 차폐되는 것으로 가정한다.
- 아) 직접선량 계산 시 건설기간 중 건물 내부 작업자에 대한 직접선량은 무시한다. 건설 첫 해에는 건설작업자의 100%가, 건설 2,3,4년에는 건설작업자의 50%가 그리고, 건설 마지막 해에는 건설작업자의 20%가 건물 외부에서 작업한다(발전소 주요 건물과 구조물 내부에 있는 작업자들은 이들 구조물의 콘크리트와 Steel에 의한 차폐효과로 인하여 직접 선량으로부터 방호된다).
- 자) 발전소 내 모든 구조물의 외부는 방사선 구역 I으로 차폐 설계되고 있다. 차폐설계는 설계기준 방사선원(Design Basis Source Term)에 근거하여 보수적으로 평가되고 있지만 환경영향평가를 위한 구조물 외부에서의 방사선량율은 예상 방사선원(Expected Source Term)을 사용하여 실제적으로 계산되어야 한다. 격납건물 외부에 대한 주요 방사선원은 원자로냉각재계통의 관련 배관들이며 동 배관의 예상 방사선원에 의한 선량율은 설계기준 방사선원에 의한 선량율의 20%정도로 평가되고 있다. 한편, 영광 1,2,3,4호기와 영광 5호기의 방사선 구역 I의 최대설계 유효선량은 각각 5.0×10⁻³mSv/hr (0.5mrem/hr) 및 1.0×10⁻³mSv/hr (0.1mrem/hr)이다. 건설작업자에 대한 직접선량 계산시 영광 1,2,3,4호기와 영광 5호기건물외부의 예상 표면 유효 선량율을 모두 1.0×10⁻³mSv/hr로 가정한다. 그리고 선원은 1MeV의 γ 선으로 가정한다.
- 차) 영광 1,2,3,4호기 발전소로부터 방출되는 방사성 핵종의 방출량은 1998년도 원자력발전 소 방사선관리 연보에 제시된 1995년부터 1998년까지의 실제 방출량 자료 중 방사성 핵 종별로 최대 방출량을 보이는 연도의 방출량을 사용하였다(표 3.4-11 참조).

표 4.2-1 건설기간별 예상 건설작업자수

건 설 기 간	영광 5 호기	영광 6 호기
1 년차	4,000 명	-
2 년차	4,000 명	4,000 명
3 년차	4,000 명	4,000 명
4 년차	4,000 명	4,000 명
5 년차	1,500 명	4,000 명
6 년차	-	1,500 명

표 4.2-2 건설기간 동안 방사성물질 방출원으로부터 작업자까지의 거리

호 기 구 분	거 리
1, 2호기 ~ 5, 6호기	1,000 m
3, 4호기 ~ 5, 6호기	500 m
5 호기 ~ 6호기	260 m

4.3 선량계산

가. 방사능운에 의한 피폭선량계산

방사능운에 의한 건설작업자의 유효선량, 피부선량, 호흡 갑상선량 등은 4.1.가에 주어진 식(4.1.3), (4.1.4) 및 (4.1.5)를 전산화한 K-DOSE60 전산프로그램을 사용하여 계산하였다.

영광 5,6호기는 영광 1,2,3,4호기에 대하여 NE 방향에 건설 중이며, 건설작업 지점에서의 각 호기에 대한 대기확산인자는 표 4.3-1과 같다. 그리고 가정 다)에 따라 건설작업자의 연간 작업 시간인 2,000시간은 1년 총 8,760 시간의 0.228에 해당한다.

표 4.3-1 각 호기에 대한 건설작업 지점에서의 대기확산인자

ž 71 7 H	대 기 확 산 인 자 (sec/m')				
호 기 구 분	X/Q	(X/Q) ^D	(X/Q) ^{DD}		
영광 1,2호기 ~ 영광 5,6호기	3.811×10^{-6}	3.785×10^{-6}	3.425×10^{-6}		
영광 3,4호기 ~ 영광 5,6호기	1.566×10^{-5}	1.561×10^{-5}	1.466×10^{-5}		
영광 5호기 ~ 영광 6호기	3.624×10^{-5}	3.617×10^{-5}	3.483×10^{-5}		

처음 4년의 건설기간동안에 건설작업자가 가동중인 영광 1,2호기와 영광 3,4호기의 방사능 운으로 인해 연간 받는 최대개인 및 집단피폭선량은 표 4.3-2와 같다.

표 4.3-2 처음 4년의 건설기간 동안 방사능운에 의해 건설작업자가 받는 피폭선량

그 분			5호기 건설	작업자 선량	6호기 건설작업자 선량		
			개인 최대 선량 집단 선량 (mSv/yr) (man-mSv)		개인 최대 선량 (mSv/yr)	집단 선량 (man-mSv)	
	车章	선량	3.50E-05	5.59E-01	3.50E-05	5.59E-01	
	ूँ छ	부	5.05E-05	8.08E-01	5.05E-05	8.08E-01	
신 처음 4년의 ^교	장	3.14E-05	5.03E-01	3.14E-05	5.03E-01		
	페		3.49E-05	5.59E-01	3.49E-05	5.59E-01	
건설기간	피	斗	1.23E-04	1.97E+00	1.23E-04	1.97E+00	
	갑 /	방 선	3.93E-05	6.29E-01	3.93E-05	6.29E-01	
	기	타	3.58E-05	5.72E-01	3.58E-05	5.72E-01	

그리고 건설 마지막 해 건설 작업자가 가동중인 영광 1,2호기와 영광 3,4호기 및 영광 5호 기의 방사능운으로 인해 받는 최대개인 및 집단피폭선량은 표 4.3-3과 같다.

표 4.3-3 건설 마지막 해 방사능운에 의해 건설작업자가 받는 피폭선량

			5호기 건설	작업자 선량	6호기 건설작업자 선량		
구 분		개인 최대 선량 집단 선량 (mSv/yr) (man-mSv)		개인 최대 선량 (mSv/yr)	집단 선량 (man-mSv)		
	產命	선량	3.50E-05	5.24E-02	5.21E-03	7.82E+00	
	कें	부	5.05E-05	7.57E-02	4.66E-03	6.98E+00	
	신	장	3.14E-05	4.71E-02	3.34E-03	5.01E+00	
건설 마지막 해	폐		3.49E-05	5.24E-02	3.68E-03	5.52E+00	
	피	부	1.23E-04	1.85E-01	1.58E-02	2.36E+01	
	갑	상 선	3.93E-05	5.90E-02	3.94E-03	5.91E+00	
	7]	타	3.58E-05	5.36E-02	3.68E-03	5.53E+00	

나. 지표면에 침적된 방사능으로부터의 선량 계산

지표면에 침적된 방사능으로부터의 유효선량 및 피부선량은 K-DOSE60 전산프로그램을 사용하여 계산하였으며, 지표면 침적인자 (D/Q)는 XOQ_DW 전산 프로그램을 사용하여 계산하였다.

영광 1,2,3,4호기에 대하여 NE 방향인 전설작업 지점에서 각 호기에 대한 지표면 침적인자는 표 4.3-4와 같고, 가정 다)에 따라 건설작업자의 연간 작업시간인 2,000시간은 1년 총 8,760 시간의 0.228에 해당한다.

표 4.3-4 각 호기에 대한 건설작업 지점에서의 지표면 침적인자

구 분	D/Q(m ⁻²)
영광 1,2호기 ~ 영광 5,6호기	7.514×10^{-9}
영광 3,4호기 ~ 영광 5,6호기	2.946×10^{-8}
영광 5호기 ~ 영광 6호기	5.166×10^{-8}

처음 4년의 건설기간 동안에 가동중인 영광 1,2호기와 3,4호기에 의해서 건설작업자가 받는 연간 최대개인 및 집단피폭선량은 4.3-5와 같다.

표 4.3-5 처음 4년의 건설기간 동안 지표면에 침적된 방사능에 의해 건설작업자가 받는 피폭선량

구 분			5호기 건설	작업자 선량	6호기 건설작업자 선량		
			개인 최대 선량 집단 선량 (mSv/yr) (man-mSv)		개인 최대 선량 (mSv/yr)	집단 선량 (man-mSv)	
	유효	.선량	9.44E-07	1.51E-02	9.44E-07	1.51E-02	
	흉	부	1.04E-06	1.66E-02	1.04E-06	1.66E-02	
처음	선 7 처음	장	8.85E-07	1.42E-02	8.85E-07	1.42E-02	
4년의	폐		9.05E-07	1.45E-02	9.05E-07	1.45E-02	
건설기간	피	부	1.57E-06	2.51E-02	1.57E-06	2.51E-02	
	갑 ^	상 선	9.51E-07	1.52E-02	9.51E-07	1.52E-02	
	기	타	1.01E-06	1.62E-02	1.01E-06	1.62E-02	

또한, 건설 마지막 해 가동중인 영광 1,2호기와 영광 3,4호기 및 영광 5호기에 의해서 건설작업자가 받는 연간 최대개인 및 집단피폭선량은 4.3-6과 같다.

표 4.3-6 건설 마지막 해 지표면에 침적된 방사능에 의해 건설작업자가 받는 피폭선량

<u>구</u> 변 T 판			5호기 건설	작업자 선량	업자 선량 6호기 건설작업자 선량		
			개인 최대 선량 (mSv/yr)	집단 선량 (man-mSv)	개인 최대 선량 (mSv/yr)	집단 선량 (man-mSv)	
	鹿유	.선량	9.44E-07	1.42E-03	3.65E-05	5.48E-02	
	흥 부 신 장		1.04E-06	1.55E-03 3.73E-05		5.59E-02	
			8.85E-07	1.33E-03	3.46E-05	5.19E-02	
건설 마지막 해	페		9.05E-07	1.36E-03	3.58E-05	5.37E-02	
1 1 21	피	부	1.57E-06	2.35E-03	7.43E-05	1.11E-01	
	갑 상 선		9.51E-07	1.43E-03	3.61E-05	5.41E-02	
	기	타	1.01E-06	1.52E-03	3.82E-05	5.73E-02	

다. 발전소로부터의 직접선량 계산

가동중인 발전소로부터의 γ 선에 의한 직접선량은 4.1.다에서 기술한 계산식들을 사용하여 구한다. 그런데 영광 1,2호기와 3,4호기 및 5,6호기는 NE 방향의 일직선 배치이다. 따라서 처음 4년간의 건설기간 동안에 영광 1,2,3호기로부터의 γ 선은 영광 4호기의 구조물에 의한 차폐효과로 무시할 수 있으므로 영광 5,6호기의 건설작업자가 받는 선량은 영광 4호기로부터의 직접선량만을 고려하면 되고, 건설 마지막 해에 영광 1,2호기 및 3,4호기로부터의 γ 선은 영광 5호기의 구조물에 의한 차폐효과로 무시할 수 있으므로, 영광 6호기 건설작업자가 받는 선량은 영광 5호기로부터의 직접선량만을 고려하면 된다. 건설 작업자의 직접선량 계산에 필요한 변수 값은 표 4.3-7에 주어져 있고, 직접피폭선량 결과는 표 4.3-8과 같다.

표 4.3-7 건설작업자의 직접선량 계산에 사용된 변수 값

		처음4년의 건설기간	건설마지막 해
- θ	i	4.99 °	7.51 °
- μr	:	2.96	1.891
- Sievert 적분함수값	1	4.498×10^{-3}	1.986×10^{-2}
- 누적계수	2	5.059	3.439
- 연간작업자 직접선량	1	2.844×10^{-2}	1.279×10^{-1}
- 모든 작업자선량	1	5.688×10^{-2}	3.387×10^{-2}

표 4.3-8 건설기간 동안 직접피폭에 의해 건설작업자가 받는 피폭서량

구 분	5, 6 호기 건설작업자 선량			
T &	처음 4년의 건설기간	건설 마지막 해		
개인 최대 선량 (mSv/yr)	2.84E-02	1.28E-01		
집단 선량 (man-mSv)	2.27E-01	3.84E-02		

4.4 연간 피폭선량의 요약

각 건설작업자의 연간 피폭선량과 작업자들에 대한 연간 총 최대개인 및 집단피폭선량을 처음 4년 동안의 건설기간과 건설 마지막해로 나누어 계산한 4.3항의 계산결과는 표 4.4-1 및 표 4.4-2와 같이 요약된다.

결론적으로 영광 5,6호기의 전 건설기간동안 각 건설작업자가 가동중인 발전소로부터 연간 자회대개인 유효선량(최대 0.133 mSv/yr)은 과기부고시 98-12호(1998. 8. 11. 개정)에서의 연간 유효선량한도(1 mSv/yr)의 13.3%정도이며, 영광 1,2,3,4호기가 가동중이더라도 부지 내에서의 선량 측정치 자연방사능 정도에 불과 할 것으로 예상되므로 실제 피폭선량은 이 값보다 적어질 것으로 예상된다. 따라서, 발전소 건설 시 건설작업자가 동일 부지 내에서 가동중인 영광 1,2,3,4호기와 영광 5호기로부터 받는 방사능 영향은 문제시되지 않을 것으로 평가된다.

표 4.4-1 건설작업자의 연간 최대개인피폭선량

	구 분		연 간 선 량 (mSv/yr)					
	T	유효선량	흉 부	신 장	폐	피부	갑상선	기타
처음	1. 방사능운에 의한 선량	6.99E-05	1.01E-04	6.28E-05	6.99E-05	2.46E-04	7.87E-05	7.15E-05
4년간	2. 지표면 침적선량	1.89E-06	2.07E-06	1.77E-06	1.81E-06	3.14E-06	1.90E-06	2.02E-06
	3. 직접선량 ^{주1)}	2.84E-02	2.84E-02	2.84E-02	2.84E-02	2.84E-02	2.84E-02	2.84E-02
건설기간	계	2.85E-02	2.85E-02	2.85E-02	2.85E-02	2.86E-02	2.85E-02	2.85E-02
	1. 방사능운에 의한 선량	5.25E-03	4.71E-03	3.37E-03	3.72E-03	1.59E-02	3.98E-03	3.72E-03
건설	2. 지표면 침적선량	3.75E-05	3.83E-05	3.55E-05	3.67E-05	7.59E-05	3.70E-05	3.92E-05
마지막 해	3. 직접선량 ^{주])}	1.28E-01	1.28E-01	1.28E-01	1.28E-01	1.28E-01	1.28E-01	1.28E-01
	계	1.33E-01	1.33E-01	1.31E-01	1.32E-01	1.44E-01	1.32E-01	1.32E-01

주1) 유효선량 이외의 장기별 선량은 장기의 흡수질량 감쇄계수가 $\frac{\mu_a}{\rho} = 0.03 \ cm^2/g$ 으로 동일한 가정 하에 계산 됨.

표 4.4-2 모든 건설작업자에 대한 연간 총 집단피폭선량

구 분		연 간 선 량 (man-Sv)						
		유효선량	흉부	신 장	페	피부	갑상선	기타
	1. 방사능운에 의한 선량	1.12E-03	1.62E-03	1.01E-03	1.12E-03	3.94E-03	1.26E-03	1.14E-03
처음 4년간	2. 지표면 침적선량	3.02E-05	3.31E-05	2.83E-05	2.90E-05	5.02E-05	3.04E-05	3.23E-05
4년간 건설기간	3. 직접선량 ^{주1)}	2.27E-01	2.27E-01	2.27E-01	2.27E-01	2.27E-01	2.27E-01	2.27E-01
	계	2.28E-01	2.29E-01	2.28E-01	2.28E-01	2.31E-01	2.28E-01	2.28E-01
	1. 방사능운에 의한 선량	7.87E-03	7.06E-03	5.05E-03	5.58E-03	2.38E-02	5.97E-03	5.58E-03
건설	2. 지표면 침적선량	5.62E-05	5.75E-05	5.33E-05	5.50E-05	1.14E-04	5.55E-05	5.88E-05
마지막 해	3. 직접선량 ^{주1)}	3.84E-02	3.84E-02	3.84E-02	3.84E-02	3.84E-02	3.84E-02	3.84E-02
	계	4.63E-02	4.55E-02	4.35E-02	4.40E-02	6.23E-02	4.44E-02	4.40E-02

주1) 유효선량 이외의 장기별 선량은 장기의 흡수질량 감쇄계수가 $\frac{\mu_a}{\rho}=0.03~cm^2/g$ 으로 동일한 가정 하에 계산 됨.